A new tool to improve the computation of animal kinetic activity indices in precision poultry farming

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY
Alberto Carraro , Mattia Pravato , Francesco Marinello , Francesco Bordignon , Angela Trocino , Gerolamo Xiccato , Andrea Pezzuolo
{"title":"A new tool to improve the computation of animal kinetic activity indices in precision poultry farming","authors":"Alberto Carraro ,&nbsp;Mattia Pravato ,&nbsp;Francesco Marinello ,&nbsp;Francesco Bordignon ,&nbsp;Angela Trocino ,&nbsp;Gerolamo Xiccato ,&nbsp;Andrea Pezzuolo","doi":"10.1016/j.aiia.2025.03.005","DOIUrl":null,"url":null,"abstract":"<div><div>Precision Livestock Farming (PLF) emerges as a promising solution for revolutionising farming by enabling real-time automated monitoring of animals through smart technologies. PLF provides farmers with precise data to enhance farm management, increasing productivity and profitability. For instance, it allows for non-intrusive health assessments, contributing to maintaining a healthy herd while reducing stress associated with handling. In the poultry sector, image analysis can be utilised to monitor and analyse the behaviour of each hen in real time. Researchers have recently used machine learning algorithms to monitor the behaviour, health, and positioning of hens through computer vision techniques. Convolutional neural networks, a type of deep learning algorithm, have been utilised for image analysis to identify and categorise various hen behaviours and track specific activities like feeding and drinking. This research presents an automated system for analysing laying hen movement using video footage from surveillance cameras. With a customised implementation of object tracking, the system can efficiently process hundreds of hours of videos while maintaining high measurement precision. Its modular implementation adapts well to optimally exploit the GPU computing capabilities of the hardware platform it is running on. The use of this system is beneficial for both real-time monitoring and post-processing, contributing to improved monitoring capabilities in precision livestock farming.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 4","pages":"Pages 659-670"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721725000327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Precision Livestock Farming (PLF) emerges as a promising solution for revolutionising farming by enabling real-time automated monitoring of animals through smart technologies. PLF provides farmers with precise data to enhance farm management, increasing productivity and profitability. For instance, it allows for non-intrusive health assessments, contributing to maintaining a healthy herd while reducing stress associated with handling. In the poultry sector, image analysis can be utilised to monitor and analyse the behaviour of each hen in real time. Researchers have recently used machine learning algorithms to monitor the behaviour, health, and positioning of hens through computer vision techniques. Convolutional neural networks, a type of deep learning algorithm, have been utilised for image analysis to identify and categorise various hen behaviours and track specific activities like feeding and drinking. This research presents an automated system for analysing laying hen movement using video footage from surveillance cameras. With a customised implementation of object tracking, the system can efficiently process hundreds of hours of videos while maintaining high measurement precision. Its modular implementation adapts well to optimally exploit the GPU computing capabilities of the hardware platform it is running on. The use of this system is beneficial for both real-time monitoring and post-processing, contributing to improved monitoring capabilities in precision livestock farming.
一种改进精密家禽养殖动物动力活动指数计算的新工具
精准畜牧业(PLF)通过智能技术实现对动物的实时自动化监控,成为一种有前途的农业革命解决方案。PLF为农民提供精确的数据,以加强农场管理,提高生产力和盈利能力。例如,它允许进行非侵入性健康评估,有助于保持健康的牛群,同时减少与处理相关的压力。在家禽业,图像分析可用于实时监测和分析每只母鸡的行为。研究人员最近使用机器学习算法通过计算机视觉技术来监测母鸡的行为、健康和定位。卷积神经网络是一种深度学习算法,已被用于图像分析,以识别和分类母鸡的各种行为,并跟踪诸如喂食和饮水等特定活动。本研究提出了一种利用监控摄像机录像片段分析蛋鸡运动的自动化系统。通过定制的目标跟踪实现,该系统可以有效地处理数百小时的视频,同时保持高测量精度。它的模块化实现很好地适应了它所运行的硬件平台的GPU计算能力。该系统的使用有利于实时监测和后期处理,有助于提高精准畜牧业的监测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信