{"title":"Peracetic acid-driven advanced oxidation processes for wastewater treatment: Demystifying organic radicals and non-radical species","authors":"Guanglei Yao, Xuefei Zhou, Haiping Gao, Tongcai Liu, Yalei Zhang, Jiabin Chen","doi":"10.1080/10643389.2025.2495637","DOIUrl":null,"url":null,"abstract":"Peracetic acid (PAA) based advanced oxidation processes (AOPs) have received increasing attention in wastewater treatment. However, it is challenging to identify the radical and/or non-radical species and elucidate the intrinsic interaction mechanisms involved in PAA-based AOPs. This work presents a systematic review of the selective generation mechanisms of radicals (hydroxyl and organic radicals), with a focus on organic radicals, and non-radical species (reactive complexes (RC), high-valent metals (HVM), singlet oxygen (<sup>1</sup>O<sub>2</sub>), and electron transfer process (ETP)). Furthermore, we examine various strategies for the precise identification and characterization of radical and/or non-radical species (e.g., quenching, chemical probes, spectroscopy, mass spectrometry, and electrochemical testing), and emphasize existing controversies. Subsequently, we provide an in-depth discussion of the reaction mechanisms between the reactive species and the contaminants/water matrices, as well as the potential for generating halogenated byproducts. Finally, we highlight the challenges and opportunities of the PAA-based AOPs in wastewater treatment, aiming to inspire future research endeavors that promote the practical application of PAA-based AOPs in wastewater treatment.","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"4 1","pages":"1124-1147"},"PeriodicalIF":11.4000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2025.2495637","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Peracetic acid (PAA) based advanced oxidation processes (AOPs) have received increasing attention in wastewater treatment. However, it is challenging to identify the radical and/or non-radical species and elucidate the intrinsic interaction mechanisms involved in PAA-based AOPs. This work presents a systematic review of the selective generation mechanisms of radicals (hydroxyl and organic radicals), with a focus on organic radicals, and non-radical species (reactive complexes (RC), high-valent metals (HVM), singlet oxygen (1O2), and electron transfer process (ETP)). Furthermore, we examine various strategies for the precise identification and characterization of radical and/or non-radical species (e.g., quenching, chemical probes, spectroscopy, mass spectrometry, and electrochemical testing), and emphasize existing controversies. Subsequently, we provide an in-depth discussion of the reaction mechanisms between the reactive species and the contaminants/water matrices, as well as the potential for generating halogenated byproducts. Finally, we highlight the challenges and opportunities of the PAA-based AOPs in wastewater treatment, aiming to inspire future research endeavors that promote the practical application of PAA-based AOPs in wastewater treatment.
期刊介绍:
Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics.
Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges.
The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.