Efficient Non-Local Point Cloud Denoising Using Curvature Entropy and $\gamma$-Norm Minimization.

IF 6.5
Jian Chen, Feng Gao, Pingping Chen, Weisi Lin
{"title":"Efficient Non-Local Point Cloud Denoising Using Curvature Entropy and $\\gamma$-Norm Minimization.","authors":"Jian Chen, Feng Gao, Pingping Chen, Weisi Lin","doi":"10.1109/TVCG.2025.3577915","DOIUrl":null,"url":null,"abstract":"<p><p>Non-local similarity (NLS) has been successfully applied to point cloud denoising. However, existing non-local methods either involve high algorithmic complexity in capturing NLS or suffer from diminished accuracy in estimating low-rank matrices. To address these problems, we propose a Point Cloud Denoising framework using $\\gamma$-norm minimization based on Curvature Entropy (PCD-$\\gamma$CE) for efficiently removing noise. First, we develop a structure descriptor, which exploits Curvature Entropy (CE) to accurately capture shape variation details of Non-Local Similar Structure (NLSS), and employs Angle Subdivision (AS) of NLSS to control the complexity of initial normal matrix construction. Second, we introduce $\\gamma$-norm to construct a low-rank denoising model for initial normal matrix, thereby providing a nearly unbiased estimation of rank function with better robustness to noise. Extensive experiments on synthetic and raw scanned point clouds show that our approach outperforms the popular denoising methods, with a 99.90% time reduction and gains in Mean Square Error (MSE) and Chamfer Distance (CD) compared with the Weighted Nuclear Norm Minimization (WNNM) method. The code will be available soon at https://github.com/fancj2017/PCD-rCE.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3577915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Non-local similarity (NLS) has been successfully applied to point cloud denoising. However, existing non-local methods either involve high algorithmic complexity in capturing NLS or suffer from diminished accuracy in estimating low-rank matrices. To address these problems, we propose a Point Cloud Denoising framework using $\gamma$-norm minimization based on Curvature Entropy (PCD-$\gamma$CE) for efficiently removing noise. First, we develop a structure descriptor, which exploits Curvature Entropy (CE) to accurately capture shape variation details of Non-Local Similar Structure (NLSS), and employs Angle Subdivision (AS) of NLSS to control the complexity of initial normal matrix construction. Second, we introduce $\gamma$-norm to construct a low-rank denoising model for initial normal matrix, thereby providing a nearly unbiased estimation of rank function with better robustness to noise. Extensive experiments on synthetic and raw scanned point clouds show that our approach outperforms the popular denoising methods, with a 99.90% time reduction and gains in Mean Square Error (MSE) and Chamfer Distance (CD) compared with the Weighted Nuclear Norm Minimization (WNNM) method. The code will be available soon at https://github.com/fancj2017/PCD-rCE.

基于曲率熵和$\gamma$范数最小化的高效非局部点云去噪
非局部相似度(NLS)已成功应用于点云去噪。然而,现有的非局部方法要么在捕获NLS时涉及较高的算法复杂度,要么在估计低秩矩阵时精度降低。为了解决这些问题,我们提出了一个基于曲率熵的$\gamma$范数最小化的点云去噪框架(PCD-$\gamma$CE),以有效地去除噪声。首先,我们开发了一种结构描述符,利用曲率熵(CE)来准确捕捉非局部相似结构(NLSS)的形状变化细节,并利用NLSS的角度细分(AS)来控制初始法向矩阵构造的复杂性。其次,我们引入$\gamma$-范数来构建初始正态矩阵的低秩去噪模型,从而提供了一个几乎无偏的秩函数估计,并且对噪声具有更好的鲁棒性。在合成点云和原始扫描点云上进行的大量实验表明,与加权核范数最小化(WNNM)方法相比,该方法的降噪时间减少了99.90%,均方误差(MSE)和棱距(CD)都有所提高。代码将很快在https://github.com/fancj2017/PCD-rCE上提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信