Unveiling Prognostic and Diagnostic Biomarkers in Knee and Hip Osteoarthritis: A Targeted Review.

IF 2.1
Sergiu Andrei Iordache, Adrian Cursaru, Bogdan Serban, Irina Anca Eremia, Corneliu Ovidiu Vrancianu, Marian Constantin, Sergiu Stanciu, Florin Catalin Cirstoiu
{"title":"Unveiling Prognostic and Diagnostic Biomarkers in Knee and Hip Osteoarthritis: A Targeted Review.","authors":"Sergiu Andrei Iordache, Adrian Cursaru, Bogdan Serban, Irina Anca Eremia, Corneliu Ovidiu Vrancianu, Marian Constantin, Sergiu Stanciu, Florin Catalin Cirstoiu","doi":"10.24976/Discov.Med.202537197.86","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis is a multifactorial condition marked by the gradual deterioration of joint cartilage, synovial inflammation, alterations in the subchondral bone and changes in the surrounding soft tissues. Clinical assessments and patient-reported outcome measures can identify pathological tissue alterations in osteoarthritis, in conjunction with radiographic evaluation of osteophytes, bone sclerosis, and joint space reduction. Although available treatments can help manage symptoms, early identification of prognostic factors for osteoarthritis progression is crucial for personalizing interventions and improving long-term outcomes. Therefore, it is essential to identify the key factors that can influence the disease's progression, including biological, mechanical, and clinical aspects. This review synthesizes current findings on the prognostic and diagnostic value of various biomarkers (systemic, intrinsic) and prognostic factors (biochemical, genetic, epigenetic) in knee and hip osteoarthritis. We also discuss the role of machine learning tools in identifying new biomarkers associated with osteoarthritis development and progression, paving the way for translation to clinical studies. In addition, we discuss recent studies aimed at identifying potential biomarkers and molecules that could serve as therapeutic strategies for osteoarthritis treatment.</p>","PeriodicalId":93980,"journal":{"name":"Discovery medicine","volume":"37 197","pages":"960-975"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discovery medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24976/Discov.Med.202537197.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis is a multifactorial condition marked by the gradual deterioration of joint cartilage, synovial inflammation, alterations in the subchondral bone and changes in the surrounding soft tissues. Clinical assessments and patient-reported outcome measures can identify pathological tissue alterations in osteoarthritis, in conjunction with radiographic evaluation of osteophytes, bone sclerosis, and joint space reduction. Although available treatments can help manage symptoms, early identification of prognostic factors for osteoarthritis progression is crucial for personalizing interventions and improving long-term outcomes. Therefore, it is essential to identify the key factors that can influence the disease's progression, including biological, mechanical, and clinical aspects. This review synthesizes current findings on the prognostic and diagnostic value of various biomarkers (systemic, intrinsic) and prognostic factors (biochemical, genetic, epigenetic) in knee and hip osteoarthritis. We also discuss the role of machine learning tools in identifying new biomarkers associated with osteoarthritis development and progression, paving the way for translation to clinical studies. In addition, we discuss recent studies aimed at identifying potential biomarkers and molecules that could serve as therapeutic strategies for osteoarthritis treatment.

揭示膝关节和髋关节骨关节炎的预后和诊断生物标志物:一项有针对性的综述。
骨关节炎是一种多因素疾病,其特征是关节软骨的逐渐退化、滑膜炎症、软骨下骨的改变和周围软组织的改变。临床评估和患者报告的结果测量可以识别骨关节炎的病理组织改变,结合骨赘、骨硬化和关节间隙缩小的影像学评估。虽然现有的治疗方法可以帮助控制症状,但早期识别骨关节炎进展的预后因素对于个性化干预和改善长期结果至关重要。因此,必须确定影响疾病进展的关键因素,包括生物学、力学和临床方面。本文综述了各种生物标志物(系统的、内在的)和预后因素(生化的、遗传的、表观遗传的)在膝关节和髋关节骨关节炎中的预后和诊断价值。我们还讨论了机器学习工具在识别与骨关节炎发展和进展相关的新生物标志物方面的作用,为转化为临床研究铺平了道路。此外,我们讨论了最近的研究,旨在确定潜在的生物标志物和分子,可以作为治疗骨关节炎的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信