Sai Spandana Chintapalli, Sindhuja T Govindarajan, Haochang Shou, Yong Fan, Hao Huang, Christos Davatzikos
{"title":"Parsing disease heterogeneity in structural and functional MRI-derived measures using normative modeling and Generative Adversarial Networks (GANs).","authors":"Sai Spandana Chintapalli, Sindhuja T Govindarajan, Haochang Shou, Yong Fan, Hao Huang, Christos Davatzikos","doi":"10.1117/12.3040541","DOIUrl":null,"url":null,"abstract":"<p><p>We present a preliminary analysis of a GAN-based normative modeling technique for capturing individual-level deviations in brain measures, addressing heterogeneity in neurological disorders. By leveraging self-supervised training on pseudo-synthetically simulated patient data, our method detects disease-related effects without the need for large, disease-specific datasets. We demonstrate the versatility of this approach by applying it to structural MRI and resting-state fMRI data, identifying neuroanatomical and functional connectivity deviations in Alzheimer's disease (AD) and Traumatic Brain Injury (TBI). This model's ability to accurately capture disease-related abnormalities in brain measures highlights its potential as a powerful tool for personalized diagnosis and the study of brain disorders, opening new avenues for research.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"13407 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143270/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3040541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present a preliminary analysis of a GAN-based normative modeling technique for capturing individual-level deviations in brain measures, addressing heterogeneity in neurological disorders. By leveraging self-supervised training on pseudo-synthetically simulated patient data, our method detects disease-related effects without the need for large, disease-specific datasets. We demonstrate the versatility of this approach by applying it to structural MRI and resting-state fMRI data, identifying neuroanatomical and functional connectivity deviations in Alzheimer's disease (AD) and Traumatic Brain Injury (TBI). This model's ability to accurately capture disease-related abnormalities in brain measures highlights its potential as a powerful tool for personalized diagnosis and the study of brain disorders, opening new avenues for research.