Parsing disease heterogeneity in structural and functional MRI-derived measures using normative modeling and Generative Adversarial Networks (GANs).

Sai Spandana Chintapalli, Sindhuja T Govindarajan, Haochang Shou, Yong Fan, Hao Huang, Christos Davatzikos
{"title":"Parsing disease heterogeneity in structural and functional MRI-derived measures using normative modeling and Generative Adversarial Networks (GANs).","authors":"Sai Spandana Chintapalli, Sindhuja T Govindarajan, Haochang Shou, Yong Fan, Hao Huang, Christos Davatzikos","doi":"10.1117/12.3040541","DOIUrl":null,"url":null,"abstract":"<p><p>We present a preliminary analysis of a GAN-based normative modeling technique for capturing individual-level deviations in brain measures, addressing heterogeneity in neurological disorders. By leveraging self-supervised training on pseudo-synthetically simulated patient data, our method detects disease-related effects without the need for large, disease-specific datasets. We demonstrate the versatility of this approach by applying it to structural MRI and resting-state fMRI data, identifying neuroanatomical and functional connectivity deviations in Alzheimer's disease (AD) and Traumatic Brain Injury (TBI). This model's ability to accurately capture disease-related abnormalities in brain measures highlights its potential as a powerful tool for personalized diagnosis and the study of brain disorders, opening new avenues for research.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"13407 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143270/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3040541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a preliminary analysis of a GAN-based normative modeling technique for capturing individual-level deviations in brain measures, addressing heterogeneity in neurological disorders. By leveraging self-supervised training on pseudo-synthetically simulated patient data, our method detects disease-related effects without the need for large, disease-specific datasets. We demonstrate the versatility of this approach by applying it to structural MRI and resting-state fMRI data, identifying neuroanatomical and functional connectivity deviations in Alzheimer's disease (AD) and Traumatic Brain Injury (TBI). This model's ability to accurately capture disease-related abnormalities in brain measures highlights its potential as a powerful tool for personalized diagnosis and the study of brain disorders, opening new avenues for research.

使用规范建模和生成对抗网络(GANs)分析结构和功能mri衍生测量中的疾病异质性。
我们提出了一种基于gan的规范建模技术的初步分析,用于捕获大脑测量中的个体水平偏差,解决神经系统疾病的异质性。通过利用伪综合模拟患者数据的自我监督训练,我们的方法可以检测疾病相关的影响,而不需要大型的疾病特定数据集。我们通过将其应用于结构MRI和静息状态fMRI数据来证明这种方法的多功能性,识别阿尔茨海默病(AD)和创伤性脑损伤(TBI)的神经解剖和功能连接偏差。该模型能够准确捕获大脑测量中与疾病相关的异常,这突显了它作为个性化诊断和大脑疾病研究的强大工具的潜力,为研究开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信