What randomization can and cannot guarantee.

Observational studies Pub Date : 2025-04-11 eCollection Date: 2025-01-01 DOI:10.1353/obs.2025.a956839
Peng Ding
{"title":"What randomization can and cannot guarantee.","authors":"Peng Ding","doi":"10.1353/obs.2025.a956839","DOIUrl":null,"url":null,"abstract":"<p><p>Aronow et al. (2024) provide a great service to the causal inference community by delineating the key results in Robins and Ritov (1997). They show that randomized controlled trials (RCTs) ensure much stronger statistical inference than unconfounded observational studies even though nonparametric identification is identical in both settings. These results are in sharp contrast to the claim in Pearl and Mackenzie (2018) that RCTs are not the gold standard of causal analysis. Pearl and Mackenzie's (2018) claim is false and misleading for empirical researchers who want to infer causal effects based on data with finite sample sizes. I will further review what randomization can and cannot guarantee more broadly. In particular, I will highlight the value of randomization-based inference in RCTs, the limit of randomization alone for more complicated causal inference questions, and the importance of sensitivity analysis in observational studies.</p>","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":"11 1","pages":"27-40"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12139720/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2025.a956839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aronow et al. (2024) provide a great service to the causal inference community by delineating the key results in Robins and Ritov (1997). They show that randomized controlled trials (RCTs) ensure much stronger statistical inference than unconfounded observational studies even though nonparametric identification is identical in both settings. These results are in sharp contrast to the claim in Pearl and Mackenzie (2018) that RCTs are not the gold standard of causal analysis. Pearl and Mackenzie's (2018) claim is false and misleading for empirical researchers who want to infer causal effects based on data with finite sample sizes. I will further review what randomization can and cannot guarantee more broadly. In particular, I will highlight the value of randomization-based inference in RCTs, the limit of randomization alone for more complicated causal inference questions, and the importance of sensitivity analysis in observational studies.

随机化能保证什么,不能保证什么。
Aronow等人(2024)通过描述Robins和Ritov(1997)的关键结果,为因果推理界提供了很大的服务。他们表明,随机对照试验(rct)确保比非混杂观察性研究更强的统计推断,即使在两种情况下非参数识别是相同的。这些结果与Pearl和Mackenzie(2018)的说法形成鲜明对比,后者认为随机对照试验不是因果分析的黄金标准。Pearl和Mackenzie(2018)的说法是错误的,对于那些想要根据有限样本量的数据推断因果关系的实证研究人员来说是误导的。我将进一步更广泛地回顾随机化能保证什么和不能保证什么。特别是,我将强调随机化推理在随机对照试验中的价值,随机化在更复杂的因果推理问题中的局限性,以及敏感性分析在观察性研究中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信