Kayli C Davies, Haloom Rafehi, Liam G Fearnley, Penny Snell, Greta Gillies, Tess A Field, Gábor M Halmágyi, Kishore R Kumar, Kate Pope, Renee Smyth, Susan E Tomlinson, Stephen Tisch, Chi-Chang Tang, Shaun R D Watson, Thomas Wellings, Kathy H C Wu, David J Szmulewicz, Martin B Delatycki, Melanie Bahlo, Paul J Lockhart
{"title":"Comprehensive Characterisation of the RFC1 Repeat in an Australian Cohort.","authors":"Kayli C Davies, Haloom Rafehi, Liam G Fearnley, Penny Snell, Greta Gillies, Tess A Field, Gábor M Halmágyi, Kishore R Kumar, Kate Pope, Renee Smyth, Susan E Tomlinson, Stephen Tisch, Chi-Chang Tang, Shaun R D Watson, Thomas Wellings, Kathy H C Wu, David J Szmulewicz, Martin B Delatycki, Melanie Bahlo, Paul J Lockhart","doi":"10.1007/s12311-025-01867-2","DOIUrl":null,"url":null,"abstract":"<p><p>RFC1-related disease, which includes cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS), is a late-onset neurodegenerative disorder primarily caused by biallelic AAGGG<sub>(n)</sub> repeat expansions (RE) in RFC1. The RFC1 locus is highly polymorphic, with multiple pathogenic and non-pathogenic repeat motifs identified. This study aimed to characterise the structure of the RFC1 repeat and determine the pathogenic allele frequency in an Australian cohort. Using a combination of PCR and next generation sequencing techniques, we provide a comprehensive characterisation of the RFC1 repeat locus in an Australian cohort of 232 individuals with adult-onset ataxia and 269 healthy controls. Biallelic pathogenic RFC1 variants were identified in 34.1% of affected individuals. The overwhelming majority (93.7%) have biallelic AAGGG<sub>(n)</sub> RE, although other pathogenic alleles, including ACAGG<sub>(n)</sub>, AAAGG<sub>(>500)</sub> and the Māori AAAGG<sub>(10-25)</sub>AAGGG<sub>(n)</sub>AAAGG<sub>(4-6)</sub> configuration were detected in some affected individuals. We also demonstrate the utility of targeted long-read sequencing in resolving complex alleles. The carrier frequency of the pathogenic AAGGG<sub>(n)</sub> expansion was approximately 1 in 16 in controls, highlighting the potential for pseudodominant inheritance and the likelihood that RFC1-related disease is underdiagnosed. We further demonstrate the significant RFC1 repeat heterogeneity, identifying 16 distinct motifs, complex repeat structures, and at least six motifs with an allele frequency > 1%. The frequency of RFC1-related disease in individuals with adult-onset cerebellar ataxia and the high carrier frequency of pathogenic RFC1 alleles in the Australian population underscores the need for improved diagnostic strategies. Our findings indicate RFC1 RE are a major cause of late-onset cerebellar ataxia and sensory neuropathy in Australia and provide further insights into RFC1 repeat diversity.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":"24 4","pages":"111"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebellum","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12311-025-01867-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
RFC1-related disease, which includes cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS), is a late-onset neurodegenerative disorder primarily caused by biallelic AAGGG(n) repeat expansions (RE) in RFC1. The RFC1 locus is highly polymorphic, with multiple pathogenic and non-pathogenic repeat motifs identified. This study aimed to characterise the structure of the RFC1 repeat and determine the pathogenic allele frequency in an Australian cohort. Using a combination of PCR and next generation sequencing techniques, we provide a comprehensive characterisation of the RFC1 repeat locus in an Australian cohort of 232 individuals with adult-onset ataxia and 269 healthy controls. Biallelic pathogenic RFC1 variants were identified in 34.1% of affected individuals. The overwhelming majority (93.7%) have biallelic AAGGG(n) RE, although other pathogenic alleles, including ACAGG(n), AAAGG(>500) and the Māori AAAGG(10-25)AAGGG(n)AAAGG(4-6) configuration were detected in some affected individuals. We also demonstrate the utility of targeted long-read sequencing in resolving complex alleles. The carrier frequency of the pathogenic AAGGG(n) expansion was approximately 1 in 16 in controls, highlighting the potential for pseudodominant inheritance and the likelihood that RFC1-related disease is underdiagnosed. We further demonstrate the significant RFC1 repeat heterogeneity, identifying 16 distinct motifs, complex repeat structures, and at least six motifs with an allele frequency > 1%. The frequency of RFC1-related disease in individuals with adult-onset cerebellar ataxia and the high carrier frequency of pathogenic RFC1 alleles in the Australian population underscores the need for improved diagnostic strategies. Our findings indicate RFC1 RE are a major cause of late-onset cerebellar ataxia and sensory neuropathy in Australia and provide further insights into RFC1 repeat diversity.
期刊介绍:
Official publication of the Society for Research on the Cerebellum devoted to genetics of cerebellar ataxias, role of cerebellum in motor control and cognitive function, and amid an ageing population, diseases associated with cerebellar dysfunction.
The Cerebellum is a central source for the latest developments in fundamental neurosciences including molecular and cellular biology; behavioural neurosciences and neurochemistry; genetics; fundamental and clinical neurophysiology; neurology and neuropathology; cognition and neuroimaging.
The Cerebellum benefits neuroscientists in molecular and cellular biology; neurophysiologists; researchers in neurotransmission; neurologists; radiologists; paediatricians; neuropsychologists; students of neurology and psychiatry and others.