Quantifying the influence of biophysical factors in shaping brain communication through remnant functional networks.

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Network Neuroscience Pub Date : 2025-04-30 eCollection Date: 2025-01-01 DOI:10.1162/netn_a_00444
Johan Nakuci, Javier Garcia, Kanika Bansal
{"title":"Quantifying the influence of biophysical factors in shaping brain communication through remnant functional networks.","authors":"Johan Nakuci, Javier Garcia, Kanika Bansal","doi":"10.1162/netn_a_00444","DOIUrl":null,"url":null,"abstract":"<p><p>Functional connectivity (FC) reflects brain-wide communication essential for cognition, yet the role of underlying biophysical factors in shaping FC remains unclear. We quantify the influence of physical factors-structural connectivity (SC) and Euclidean distance (DC), which capture anatomical wiring and regional distance-and molecular factors-gene expression similarity (GC), and neuroreceptor congruence (RC), representing neurobiological similarity-on resting-state FC. We assess how these factors impact graph-theoretic and gradient features, capturing pairwise and higher-order interactions. By generating <i>remnant functional networks</i> after selectively removing connections tied to specific factors, we show that molecular factors, particularly RC, dominate graph-theoretic features, while gradient features are shaped by a mix of molecular and physical factors, especially GC and DC. SC has a surprisingly minor role. We also link FC alterations to biophysical factors in schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD), with physical factors differentiating these groups. These insights are key for understanding FC across various applications, including task performance, development, and clinical conditions.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 2","pages":"522-548"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140568/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00444","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Functional connectivity (FC) reflects brain-wide communication essential for cognition, yet the role of underlying biophysical factors in shaping FC remains unclear. We quantify the influence of physical factors-structural connectivity (SC) and Euclidean distance (DC), which capture anatomical wiring and regional distance-and molecular factors-gene expression similarity (GC), and neuroreceptor congruence (RC), representing neurobiological similarity-on resting-state FC. We assess how these factors impact graph-theoretic and gradient features, capturing pairwise and higher-order interactions. By generating remnant functional networks after selectively removing connections tied to specific factors, we show that molecular factors, particularly RC, dominate graph-theoretic features, while gradient features are shaped by a mix of molecular and physical factors, especially GC and DC. SC has a surprisingly minor role. We also link FC alterations to biophysical factors in schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD), with physical factors differentiating these groups. These insights are key for understanding FC across various applications, including task performance, development, and clinical conditions.

量化生物物理因素对通过残余功能网络形成大脑通讯的影响。
功能连接(FC)反映了认知所必需的全脑通信,但潜在的生物物理因素在形成FC中的作用尚不清楚。我们量化了物理因素-结构连通性(SC)和欧几里得距离(DC),它们捕获了解剖线路和区域距离,以及分子因素-基因表达相似性(GC)和神经受体一致性(RC),代表神经生物学相似性-对静息状态FC的影响。我们评估这些因素如何影响图论和梯度特征,捕捉成对和高阶相互作用。通过选择性地去除与特定因素相关的连接后生成剩余功能网络,我们发现分子因素(尤其是RC)主导着图论特征,而梯度特征是由分子和物理因素(尤其是GC和DC)混合形成的。SC的作用出奇的小。我们还将精神分裂症、双相情感障碍和注意缺陷多动障碍(ADHD)的FC改变与生物物理因素联系起来,并将物理因素与这些群体区分开来。这些见解是理解跨各种应用程序(包括任务性能、开发和临床条件)的FC的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信