Shufei Zhang, Kyesam Jung, Robert Langner, Esther Florin, Simon B Eickhoff, Oleksandr V Popovych
{"title":"Predicting response speed and age from task-evoked effective connectivity.","authors":"Shufei Zhang, Kyesam Jung, Robert Langner, Esther Florin, Simon B Eickhoff, Oleksandr V Popovych","doi":"10.1162/netn_a_00447","DOIUrl":null,"url":null,"abstract":"<p><p>Recent neuroimaging studies demonstrated that task-evoked functional connectivity (FC) may better predict individual traits than resting-state FC. However, the prediction properties of task-evoked effective connectivity (EC) remain unexplored. We investigated this by predicting individual reaction time (RT) performance in the stimulus-response compatibility task and age, using intrinsic EC (I-EC; calculated at baseline) and task-modulated EC (M-EC; induced by experimental conditions) with dynamic causal modeling (DCM) across various data processing conditions, including different general linear model (GLM) designs, Bayesian model reduction, and different cross-validation schemes and prediction models. We report evident differences in predicting RT and age between I-EC and M-EC, as well as between event-related and block-based GLM and DCM designs. M-EC outperformed both I-EC and task-evoked FC in RT prediction, while all types of connectivity performed similarly for age. Event-related GLM and DCM designs performed better than block-based designs. Our findings suggest that task-evoked I-EC and M-EC may capture different phenotypic attributes, with performance influenced by data processing and modeling choices, particularly the GLM-DCM design. This evaluation of methods for behavior prediction from brain EC may contribute to a meta-scientific understanding of how data processing and modeling frameworks influence neuroimaging-based predictions, offering insights for improving their robustness and efficacy.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 2","pages":"591-614"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140579/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00447","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recent neuroimaging studies demonstrated that task-evoked functional connectivity (FC) may better predict individual traits than resting-state FC. However, the prediction properties of task-evoked effective connectivity (EC) remain unexplored. We investigated this by predicting individual reaction time (RT) performance in the stimulus-response compatibility task and age, using intrinsic EC (I-EC; calculated at baseline) and task-modulated EC (M-EC; induced by experimental conditions) with dynamic causal modeling (DCM) across various data processing conditions, including different general linear model (GLM) designs, Bayesian model reduction, and different cross-validation schemes and prediction models. We report evident differences in predicting RT and age between I-EC and M-EC, as well as between event-related and block-based GLM and DCM designs. M-EC outperformed both I-EC and task-evoked FC in RT prediction, while all types of connectivity performed similarly for age. Event-related GLM and DCM designs performed better than block-based designs. Our findings suggest that task-evoked I-EC and M-EC may capture different phenotypic attributes, with performance influenced by data processing and modeling choices, particularly the GLM-DCM design. This evaluation of methods for behavior prediction from brain EC may contribute to a meta-scientific understanding of how data processing and modeling frameworks influence neuroimaging-based predictions, offering insights for improving their robustness and efficacy.