Modelling low-dimensional interacting brain networks reveals organising principle in human cognition.

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Network Neuroscience Pub Date : 2025-05-08 eCollection Date: 2025-01-01 DOI:10.1162/netn_a_00434
Yonatan Sanz Perl, Sebastian Geli, Eider Pérez-Ordoyo, Lou Zonca, Sebastian Idesis, Jakub Vohryzek, Viktor K Jirsa, Morten L Kringelbach, Enzo Tagliazucchi, Gustavo Deco
{"title":"Modelling low-dimensional interacting brain networks reveals organising principle in human cognition.","authors":"Yonatan Sanz Perl, Sebastian Geli, Eider Pérez-Ordoyo, Lou Zonca, Sebastian Idesis, Jakub Vohryzek, Viktor K Jirsa, Morten L Kringelbach, Enzo Tagliazucchi, Gustavo Deco","doi":"10.1162/netn_a_00434","DOIUrl":null,"url":null,"abstract":"<p><p>The discovery of resting-state networks shifted the focus from the role of local regions in cognitive tasks to the ongoing spontaneous dynamics in global networks. Recently, efforts have been invested to reduce the complexity of brain activity recordings through the application of nonlinear dimensionality reduction algorithms. Here, we investigate how the interaction between these networks emerges as an organising principle in human cognition. We combine deep variational autoencoders with computational modelling to construct a dynamical model of brain networks fitted to the whole-brain dynamics measured with functional magnetic resonance imaging (fMRI). Crucially, this allows us to infer the interaction between these networks in resting state and seven different cognitive tasks by determining the effective functional connectivity between networks. We found a high flexible reconfiguration of task-driven network interaction patterns and we demonstrate that this reconfiguration can be used to classify different cognitive tasks. Importantly, compared with using all the nodes in a parcellation, we obtain better results by modelling the dynamics of interacting networks in both model and classification performance. These findings show the key causal role of manifolds as a fundamental organising principle of brain function, providing evidence that interacting networks are the computational engines' brain during cognitive tasks.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 2","pages":"661-681"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140577/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00434","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The discovery of resting-state networks shifted the focus from the role of local regions in cognitive tasks to the ongoing spontaneous dynamics in global networks. Recently, efforts have been invested to reduce the complexity of brain activity recordings through the application of nonlinear dimensionality reduction algorithms. Here, we investigate how the interaction between these networks emerges as an organising principle in human cognition. We combine deep variational autoencoders with computational modelling to construct a dynamical model of brain networks fitted to the whole-brain dynamics measured with functional magnetic resonance imaging (fMRI). Crucially, this allows us to infer the interaction between these networks in resting state and seven different cognitive tasks by determining the effective functional connectivity between networks. We found a high flexible reconfiguration of task-driven network interaction patterns and we demonstrate that this reconfiguration can be used to classify different cognitive tasks. Importantly, compared with using all the nodes in a parcellation, we obtain better results by modelling the dynamics of interacting networks in both model and classification performance. These findings show the key causal role of manifolds as a fundamental organising principle of brain function, providing evidence that interacting networks are the computational engines' brain during cognitive tasks.

对低维相互作用的大脑网络进行建模,揭示了人类认知的组织原理。
静息状态网络的发现将焦点从局部区域在认知任务中的作用转移到全球网络中持续的自发动态。近年来,人们致力于通过应用非线性降维算法来降低大脑活动记录的复杂性。在这里,我们研究这些网络之间的相互作用如何作为人类认知的组织原则出现。我们将深度变分自编码器与计算建模相结合,构建了一个与功能磁共振成像(fMRI)测量的全脑动力学相适应的脑网络动力学模型。至关重要的是,这使我们能够通过确定这些网络之间的有效功能连接来推断静息状态下这些网络与七种不同认知任务之间的相互作用。我们发现了任务驱动的网络交互模式的高度灵活的重新配置,并证明了这种重新配置可以用于分类不同的认知任务。重要的是,与在一个分组中使用所有节点相比,我们通过对交互网络的动态建模在模型和分类性能上都获得了更好的结果。这些发现显示了流形作为大脑功能基本组织原则的关键因果作用,提供了交互网络是认知任务中计算引擎大脑的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信