Interdependence patterns of multifrequency oscillations predict visuomotor behavior.

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Network Neuroscience Pub Date : 2025-05-08 eCollection Date: 2025-01-01 DOI:10.1162/netn_a_00440
Jyotika Bahuguna, Antoine Schwey, Demian Battaglia, Nicole Malfait
{"title":"Interdependence patterns of multifrequency oscillations predict visuomotor behavior.","authors":"Jyotika Bahuguna, Antoine Schwey, Demian Battaglia, Nicole Malfait","doi":"10.1162/netn_a_00440","DOIUrl":null,"url":null,"abstract":"<p><p>We show that sensorimotor behavior can be reliably predicted from single-trial EEG oscillations fluctuating in a coordinated manner across brain regions, frequency bands, and movement time epochs. We define high-dimensional oscillatory portraits to capture the interdependence between basic oscillatory elements, quantifying oscillations occurring in single trials at specific frequencies, locations, and time epochs. We find that the general structure of the element interdependence networks (effective connectivity) remains stable across task conditions, reflecting an intrinsic coordination architecture and responds to changes in task constraints by subtle but consistently distinct topological reorganizations. Trial categories are reliably and significantly better separated using oscillatory portraits than from the information contained in individual oscillatory elements, suggesting an interelement coordination-based encoding. Furthermore, single-trial oscillatory portrait fluctuations are predictive of fine trial-to-trial variations in movement kinematics. Remarkably, movement accuracy appears to be reflected in the capacity of the oscillatory coordination architecture to flexibly update as an effect of movement-error integration.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 2","pages":"712-742"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140573/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00440","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We show that sensorimotor behavior can be reliably predicted from single-trial EEG oscillations fluctuating in a coordinated manner across brain regions, frequency bands, and movement time epochs. We define high-dimensional oscillatory portraits to capture the interdependence between basic oscillatory elements, quantifying oscillations occurring in single trials at specific frequencies, locations, and time epochs. We find that the general structure of the element interdependence networks (effective connectivity) remains stable across task conditions, reflecting an intrinsic coordination architecture and responds to changes in task constraints by subtle but consistently distinct topological reorganizations. Trial categories are reliably and significantly better separated using oscillatory portraits than from the information contained in individual oscillatory elements, suggesting an interelement coordination-based encoding. Furthermore, single-trial oscillatory portrait fluctuations are predictive of fine trial-to-trial variations in movement kinematics. Remarkably, movement accuracy appears to be reflected in the capacity of the oscillatory coordination architecture to flexibly update as an effect of movement-error integration.

多频振荡的相互依赖模式预测视觉运动行为。
我们表明,感觉运动行为可以可靠地预测单次脑电图振荡在大脑区域,频带和运动时间的协调方式波动。我们定义了高维振荡画像,以捕捉基本振荡元素之间的相互依存关系,量化在特定频率、位置和时间时代的单次试验中发生的振荡。我们发现,元素相互依赖网络(有效连接)的总体结构在不同的任务条件下保持稳定,反映了内在的协调架构,并通过微妙但始终不同的拓扑重组来响应任务约束的变化。与单个振荡元素中包含的信息相比,使用振荡肖像可靠且显著地更好地分离了试验类别,这表明基于元素间协调的编码。此外,单次试验的振荡肖像波动预测了运动运动学中精细的试验对试验的变化。值得注意的是,运动精度似乎反映在振荡协调体系结构灵活更新的能力上,作为运动误差积分的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信