Annie Ly , Rachel Karnosky , Emily D. Prévost , Hayden Hotchkiss , Julianne M. Pelletier , Robert L. Spencer , Christopher P. Ford , David H. Root
{"title":"VGluT3 BNST neurons transmit GABA and restrict sucrose consumption","authors":"Annie Ly , Rachel Karnosky , Emily D. Prévost , Hayden Hotchkiss , Julianne M. Pelletier , Robert L. Spencer , Christopher P. Ford , David H. Root","doi":"10.1016/j.molmet.2025.102178","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>The bed nucleus of the stria terminalis (BNST) is involved in feeding, reward, aversion, and anxiety-like behavior. We identify BNST neurons defined by the expression of vesicular glutamate transporter 3, VGluT3.</div></div><div><h3>Methods</h3><div>A combination of <em>in situ</em> hybridization, tract tracing, <em>ex vivo</em> whole-cell electrophysiology, <em>in vivo</em> recording, optogenetic, and behavioral approaches were used.</div></div><div><h3>Results</h3><div>VGluT3 neurons were localized to anteromedial BNST, were molecularly distinct from accumbal VGluT3 neurons, and co-express vesicular GABA transporter (VGaT). BNST VGluT3 neurons projected to arcuate nucleus (ARC) and paraventricular nucleus of the hypothalamus (PVN), regions critical for feeding and homeostatic regulation. Most single BNST VGluT3 neurons projected to either PVN or ARC and a subset projected to both. BNST VGluT3 neurons functionally transmit GABA to both ARC and PVN, with rare glutamate co-transmission to ARC. <em>In vivo</em>, VGluT3 BNST neurons showed greater neuronal activity in response to sucrose consumption while sated compared with fasted. When fasted, optogenetic stimulation of BNST VGluT3 neurons decreased sucrose consumption using several stimulation conditions but not when stimulation occurred prior to sucrose access, suggesting that BNST VGluT3 activation concurrent with consumption in the fasted state reduces feeding. BNST VGluT3 activation had no effect on anxiety-like behavior in several paradigms (novelty-suppressed feeding, open field, and elevated zero maze). BNST VGluT3 activation also did not result in real-time place preference or aversion.</div></div><div><h3>Conclusions</h3><div>We interpret these data such that VGluT3 BNST neurons represent a unique cellular population within the BNST that provides inhibitory input to hypothalamic regions to decrease sucrose consumption.</div></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"98 ","pages":"Article 102178"},"PeriodicalIF":7.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212877825000857","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
The bed nucleus of the stria terminalis (BNST) is involved in feeding, reward, aversion, and anxiety-like behavior. We identify BNST neurons defined by the expression of vesicular glutamate transporter 3, VGluT3.
Methods
A combination of in situ hybridization, tract tracing, ex vivo whole-cell electrophysiology, in vivo recording, optogenetic, and behavioral approaches were used.
Results
VGluT3 neurons were localized to anteromedial BNST, were molecularly distinct from accumbal VGluT3 neurons, and co-express vesicular GABA transporter (VGaT). BNST VGluT3 neurons projected to arcuate nucleus (ARC) and paraventricular nucleus of the hypothalamus (PVN), regions critical for feeding and homeostatic regulation. Most single BNST VGluT3 neurons projected to either PVN or ARC and a subset projected to both. BNST VGluT3 neurons functionally transmit GABA to both ARC and PVN, with rare glutamate co-transmission to ARC. In vivo, VGluT3 BNST neurons showed greater neuronal activity in response to sucrose consumption while sated compared with fasted. When fasted, optogenetic stimulation of BNST VGluT3 neurons decreased sucrose consumption using several stimulation conditions but not when stimulation occurred prior to sucrose access, suggesting that BNST VGluT3 activation concurrent with consumption in the fasted state reduces feeding. BNST VGluT3 activation had no effect on anxiety-like behavior in several paradigms (novelty-suppressed feeding, open field, and elevated zero maze). BNST VGluT3 activation also did not result in real-time place preference or aversion.
Conclusions
We interpret these data such that VGluT3 BNST neurons represent a unique cellular population within the BNST that provides inhibitory input to hypothalamic regions to decrease sucrose consumption.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.