Chi Kin Ip , Lei Zhang , Ramon Tasan , Herbert Herzog
{"title":"Stress and high fat diet reconfigure the active translatome of CeA-NPY neurons","authors":"Chi Kin Ip , Lei Zhang , Ramon Tasan , Herbert Herzog","doi":"10.1016/j.molmet.2025.102176","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>The interplay between calorie-dense food and chronic stress significantly accelerates obesity development, with neural circuits expressing Neuropeptide Y (NPY) in the central amygdala (CeA) emerging as the key mediator of this process. While these circuits are known to enhance hedonic feeding behavior and promote weight gain, the precise molecular mechanisms regulating NPY neuron activity at the translational level under the combined influence of high fat diet and stress conditions have remained poorly understood.</div></div><div><h3>Methods</h3><div>We employed translational ribosome affinity purification coupled with Next-Generation Sequencing (TRAPseq), allowing us to specifically identify RNA transcripts actively undergoing protein translation in NPY neurons under high fat diet (HFD) or high fat diet combined with stress conditions (HFDS).</div></div><div><h3>Results</h3><div>Our molecular profiling demonstrates that NPY neurons specifically co-express with genes marking the orexigenic (appetite-stimulating) population, while showing minimal overlap with anorexigenic (appetite-suppressing) markers. Gene ontology analysis identified distinct clusters involved in fatty acid metabolic processes, stress response pathways, and the production of feeding-related neuropeptides specifically under HFDS. Immunohistochemical investigations revealed in addition to local CeA (CeA<sup>m</sup>) NPY connection pathways, long-range projections, to the lateral habenula (LHb), the periaqueductal gray (PAG) and parvicellular reticular formation (PCRt). These projections suggest a specific role for CeA NPY neurons in coordinating feeding and emotional responses.</div></div><div><h3>Conclusion</h3><div>Collectively, our findings identify specific lipid-sensing mechanisms and synaptic modulating pathways as principal targets of stress within the CeA-NPY circuit, revealing novel molecular mechanisms through which NPY neurons integrate and process both dietary and stress signals.</div></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"98 ","pages":"Article 102176"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212877825000833","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
The interplay between calorie-dense food and chronic stress significantly accelerates obesity development, with neural circuits expressing Neuropeptide Y (NPY) in the central amygdala (CeA) emerging as the key mediator of this process. While these circuits are known to enhance hedonic feeding behavior and promote weight gain, the precise molecular mechanisms regulating NPY neuron activity at the translational level under the combined influence of high fat diet and stress conditions have remained poorly understood.
Methods
We employed translational ribosome affinity purification coupled with Next-Generation Sequencing (TRAPseq), allowing us to specifically identify RNA transcripts actively undergoing protein translation in NPY neurons under high fat diet (HFD) or high fat diet combined with stress conditions (HFDS).
Results
Our molecular profiling demonstrates that NPY neurons specifically co-express with genes marking the orexigenic (appetite-stimulating) population, while showing minimal overlap with anorexigenic (appetite-suppressing) markers. Gene ontology analysis identified distinct clusters involved in fatty acid metabolic processes, stress response pathways, and the production of feeding-related neuropeptides specifically under HFDS. Immunohistochemical investigations revealed in addition to local CeA (CeAm) NPY connection pathways, long-range projections, to the lateral habenula (LHb), the periaqueductal gray (PAG) and parvicellular reticular formation (PCRt). These projections suggest a specific role for CeA NPY neurons in coordinating feeding and emotional responses.
Conclusion
Collectively, our findings identify specific lipid-sensing mechanisms and synaptic modulating pathways as principal targets of stress within the CeA-NPY circuit, revealing novel molecular mechanisms through which NPY neurons integrate and process both dietary and stress signals.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.