Sarah K Tschirner, Joy Yu Zuchero, Jennifer A Getz, Stephan A Müller, Karsten Nalbach, Matthew E Kennedy, Joseph W Lewcock, Stefan F Lichtenthaler
{"title":"Soluble VCAM-1 may serve as a pharmacodynamic CSF marker to monitor BACE2 activity in non-human primates.","authors":"Sarah K Tschirner, Joy Yu Zuchero, Jennifer A Getz, Stephan A Müller, Karsten Nalbach, Matthew E Kennedy, Joseph W Lewcock, Stefan F Lichtenthaler","doi":"10.1016/j.mcpro.2025.101012","DOIUrl":null,"url":null,"abstract":"<p><p>The β-secretase β-site APP cleaving enzyme 1 (BACE1) is a major drug target for Alzheimer's disease (AD). Clinically tested BACE1 inhibitors induced unexpected cognitive side effects that may stem from their cross-inhibition of the homologous protease BACE2. Yet, little is known about BACE2 functions and substrates in vivo and no biomarker is available allowing to monitor the extent of BACE2 inhibition in vivo, in particular in cerebrospinal fluid (CSF). To identify a potential CSF biomarker for monitoring BACE2 activity, we analyzed the CSF proteome changes of non-human primates after treatment with a BACE1-selective inhibitor (a brain-targeted monoclonal antibody) in comparison to verubecestat, a clinically tested small molecule drug inhibiting both BACE1 and BACE2. Acute treatment with either the antibody or verubecestat similarly reduced CSF abundance of the cleavage products of several known BACE1 substrates, including SEZ6, gp130 and CACHD1, demonstrating similar target engagement in vivo. One CSF protein, vascular cell adhesion protein 1 (VCAM-1), was only reduced upon inhibition with verubecestat, but not upon BACE1-selective inhibition with the antibody. We conclude that VCAM-1 is a promising biomarker candidate for monitoring BACE2 inhibition in CSF, which is instrumental for the development of BACE1-selective inhibitors for the prevention of AD.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"101012"},"PeriodicalIF":6.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.101012","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The β-secretase β-site APP cleaving enzyme 1 (BACE1) is a major drug target for Alzheimer's disease (AD). Clinically tested BACE1 inhibitors induced unexpected cognitive side effects that may stem from their cross-inhibition of the homologous protease BACE2. Yet, little is known about BACE2 functions and substrates in vivo and no biomarker is available allowing to monitor the extent of BACE2 inhibition in vivo, in particular in cerebrospinal fluid (CSF). To identify a potential CSF biomarker for monitoring BACE2 activity, we analyzed the CSF proteome changes of non-human primates after treatment with a BACE1-selective inhibitor (a brain-targeted monoclonal antibody) in comparison to verubecestat, a clinically tested small molecule drug inhibiting both BACE1 and BACE2. Acute treatment with either the antibody or verubecestat similarly reduced CSF abundance of the cleavage products of several known BACE1 substrates, including SEZ6, gp130 and CACHD1, demonstrating similar target engagement in vivo. One CSF protein, vascular cell adhesion protein 1 (VCAM-1), was only reduced upon inhibition with verubecestat, but not upon BACE1-selective inhibition with the antibody. We conclude that VCAM-1 is a promising biomarker candidate for monitoring BACE2 inhibition in CSF, which is instrumental for the development of BACE1-selective inhibitors for the prevention of AD.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes