Charles S P Foster, Gregory J Walker, Tyra Jean, Maureen Wong, Levent Brassil, Sonia R Isaacs, Yonghui Lyu, Stuart Turville, Anthony Kelleher, William D Rawlinson
{"title":"Long-term serial passaging of SARS-CoV-2 reveals signatures of convergent evolution.","authors":"Charles S P Foster, Gregory J Walker, Tyra Jean, Maureen Wong, Levent Brassil, Sonia R Isaacs, Yonghui Lyu, Stuart Turville, Anthony Kelleher, William D Rawlinson","doi":"10.1128/jvi.00363-25","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding viral evolutionary dynamics is crucial to pandemic responses, prediction of virus adaptation over time, and virus surveillance for public health strategies. Whole-genome sequencing (WGS) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has enabled fine-grained studies of virus evolution in the human population. Serial passaging <i>in vitro</i> offers a complementary controlled environment to investigate the emergence and persistence of genetic variants that may confer selective advantage. In this study, nine virus lineages, including four \"variants of concern\" and three former \"variants under investigation,\" were sampled over ≥33 serial passages (range 33-100) in Vero E6 cells. WGS was used to examine virus evolutionary dynamics and identify key mutations with implications for fitness and/or transmissibility. Viruses accumulated mutations regularly during serial passaging. Many low-frequency variants were lost, but others became fixed, suggesting either <i>in vitro</i> benefits or at least a lack of deleterious effect. Mutations arose convergently both across passage lines and when compared with contemporaneous SARS-CoV-2 clinical sequences. These mutations included some that are hypothesized to drive lineage success through host immune evasion (e.g., S:A67V, S:H655Y). The appearance of these mutations <i>in vitro</i> suggested key mutations can arise convergently even in the absence of a multicellular host immune response through mechanisms other than immune-driven mutation. Such mutations may provide other benefits to the viruses <i>in vitro</i>, or arise stochastically. Our quantitative investigation into SARS-CoV-2 evolutionary dynamics spans the greatest number of serial passages to date and will inform measures to reduce the effects of SARS-CoV-2 infection on the human population.IMPORTANCEThe ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a challenge for long-term public health efforts to minimize the effects of coronavirus disease 2019. Whole-genome sequencing of outbreak cases has enabled global contact tracing efforts and the identification of mutations of concern within the virus' genome. However, complementary approaches are necessary to inform our understanding of virus evolution and clinical outcomes. Here, we charted the evolution of the virus within a controlled cell culture environment, focusing on nine different virus lineages. Our approach demonstrates how SARS-CoV-2 continues to evolve readily <i>in vitro</i>, with changes mirroring those seen in outbreak cases globally. Findings of the study are important for (i) investigating the mechanisms of how mutations arise, (ii) predicting the future evolutionary trajectory of SARS-CoV-2, and (iii) informing treatment and prevention design.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0036325"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12282192/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.00363-25","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding viral evolutionary dynamics is crucial to pandemic responses, prediction of virus adaptation over time, and virus surveillance for public health strategies. Whole-genome sequencing (WGS) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has enabled fine-grained studies of virus evolution in the human population. Serial passaging in vitro offers a complementary controlled environment to investigate the emergence and persistence of genetic variants that may confer selective advantage. In this study, nine virus lineages, including four "variants of concern" and three former "variants under investigation," were sampled over ≥33 serial passages (range 33-100) in Vero E6 cells. WGS was used to examine virus evolutionary dynamics and identify key mutations with implications for fitness and/or transmissibility. Viruses accumulated mutations regularly during serial passaging. Many low-frequency variants were lost, but others became fixed, suggesting either in vitro benefits or at least a lack of deleterious effect. Mutations arose convergently both across passage lines and when compared with contemporaneous SARS-CoV-2 clinical sequences. These mutations included some that are hypothesized to drive lineage success through host immune evasion (e.g., S:A67V, S:H655Y). The appearance of these mutations in vitro suggested key mutations can arise convergently even in the absence of a multicellular host immune response through mechanisms other than immune-driven mutation. Such mutations may provide other benefits to the viruses in vitro, or arise stochastically. Our quantitative investigation into SARS-CoV-2 evolutionary dynamics spans the greatest number of serial passages to date and will inform measures to reduce the effects of SARS-CoV-2 infection on the human population.IMPORTANCEThe ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a challenge for long-term public health efforts to minimize the effects of coronavirus disease 2019. Whole-genome sequencing of outbreak cases has enabled global contact tracing efforts and the identification of mutations of concern within the virus' genome. However, complementary approaches are necessary to inform our understanding of virus evolution and clinical outcomes. Here, we charted the evolution of the virus within a controlled cell culture environment, focusing on nine different virus lineages. Our approach demonstrates how SARS-CoV-2 continues to evolve readily in vitro, with changes mirroring those seen in outbreak cases globally. Findings of the study are important for (i) investigating the mechanisms of how mutations arise, (ii) predicting the future evolutionary trajectory of SARS-CoV-2, and (iii) informing treatment and prevention design.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.