Abigail Mayer, Rita Derua, Elijah Spahn, Iris Verbinnen, Yang Zhang, Michelle Guzman, Mark R Swingle, Brian E Wadzinski, Richard Honkanen, Veerle Janssens, Houhui Xia
{"title":"The phosphatase activity of the PPP2R5D-PP2A holoenzyme modulates liprin-α1 liquid-liquid phase separation.","authors":"Abigail Mayer, Rita Derua, Elijah Spahn, Iris Verbinnen, Yang Zhang, Michelle Guzman, Mark R Swingle, Brian E Wadzinski, Richard Honkanen, Veerle Janssens, Houhui Xia","doi":"10.1016/j.jbc.2025.110349","DOIUrl":null,"url":null,"abstract":"<p><p>Liprin-α1 is a widely expressed scaffolding protein known to regulate cellular processes such as cell motility and synaptic transmission through assembly of localized higher-order molecular complexes. However, the dynamic regulation of these complexes remains poorly understood. Liquid-liquid phase separation (LLPS) is a process that concentrates proteins into cellular nanodomains, facilitating efficient spatiotemporal signaling. Whether liprin-α1 undergoes regulated LLPS remains unclear. MS-based interactomics identified PPP2R5D, the regulatory B56δ subunit of PP2A, as a liprin-α1 interaction partner via a canonical short linear motif (SLiM) in its N-terminal dimerization domain. Mutation of SLiM4 nearly abolished liprin-α1 interaction with PP2A holoenzyme and resulted in a significant increase in GFP-liprin-α1 LLPS in HEK293 cells. Consistently, GFP-liprin-α1 exhibited increased droplet formation in PPP2R5D knockout HEK293 cells. Phospho-analysis of liprin-α1 SLiM4 mutant via MS revealed increased phosphorylation of multiple Ser/Thr sites, including S763, as validated by a novel phospho-specific antibody. A liprin-α1 S763E phospho-mimetic mutant appeared sufficient to drive LLPS. Expression of the PPP2R5D missense variant E420K, recurrently found in Houge-Janssens Syndrome Type 1 compromised suppression of liprin-α1 LLPS, correlating with increased liprin-α1 S763 phosphorylation. Mechanistically, a liprin-α1 E942A mutant unable to bind liprin-β1 underwent increased LLPS, despite preserved PPP2R5D holoenzyme binding. Furthermore, liprin-α1/β1 heterodimerization significantly decreased under conditions where liprin-α1 LLPS was promoted, i.e. upon SLiM4 or S763E mutation in wild type cells, or in PPP2R5D knockout and PPP2R5D E420K knock-in cells. Our findings identify liprin-β1 and PPP2R5D-PP2A as potent inhibitors of liprin-α1 LLPS, with PP2A contributing to liprin-α1/β1 heterodimerization via phosphorylation of at least liprin-α1 S763.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"110349"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110349","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Liprin-α1 is a widely expressed scaffolding protein known to regulate cellular processes such as cell motility and synaptic transmission through assembly of localized higher-order molecular complexes. However, the dynamic regulation of these complexes remains poorly understood. Liquid-liquid phase separation (LLPS) is a process that concentrates proteins into cellular nanodomains, facilitating efficient spatiotemporal signaling. Whether liprin-α1 undergoes regulated LLPS remains unclear. MS-based interactomics identified PPP2R5D, the regulatory B56δ subunit of PP2A, as a liprin-α1 interaction partner via a canonical short linear motif (SLiM) in its N-terminal dimerization domain. Mutation of SLiM4 nearly abolished liprin-α1 interaction with PP2A holoenzyme and resulted in a significant increase in GFP-liprin-α1 LLPS in HEK293 cells. Consistently, GFP-liprin-α1 exhibited increased droplet formation in PPP2R5D knockout HEK293 cells. Phospho-analysis of liprin-α1 SLiM4 mutant via MS revealed increased phosphorylation of multiple Ser/Thr sites, including S763, as validated by a novel phospho-specific antibody. A liprin-α1 S763E phospho-mimetic mutant appeared sufficient to drive LLPS. Expression of the PPP2R5D missense variant E420K, recurrently found in Houge-Janssens Syndrome Type 1 compromised suppression of liprin-α1 LLPS, correlating with increased liprin-α1 S763 phosphorylation. Mechanistically, a liprin-α1 E942A mutant unable to bind liprin-β1 underwent increased LLPS, despite preserved PPP2R5D holoenzyme binding. Furthermore, liprin-α1/β1 heterodimerization significantly decreased under conditions where liprin-α1 LLPS was promoted, i.e. upon SLiM4 or S763E mutation in wild type cells, or in PPP2R5D knockout and PPP2R5D E420K knock-in cells. Our findings identify liprin-β1 and PPP2R5D-PP2A as potent inhibitors of liprin-α1 LLPS, with PP2A contributing to liprin-α1/β1 heterodimerization via phosphorylation of at least liprin-α1 S763.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.