Modeling the co-evolution of multi-information and interacting diseases with higher-order effects.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-06-01 DOI:10.1063/5.0272381
Xuemei You, Ruifeng Zhang, Xiaonan Fan
{"title":"Modeling the co-evolution of multi-information and interacting diseases with higher-order effects.","authors":"Xuemei You, Ruifeng Zhang, Xiaonan Fan","doi":"10.1063/5.0272381","DOIUrl":null,"url":null,"abstract":"<p><p>To enhance epidemic management for co-occurring diseases, we investigate how multi-information diffusion impacts the transmission of interacting diseases under three interaction modes (inhibition, facilitation, asymmetry) in higher-order networks. We formulate a two-layer Unaware-Aware-Unaware-Susceptible-Infected-Susceptible model, comprising an upper information-diffusion layer and a lower disease-transmission layer with higher-order interactions represented by simplicial complexes. Extending the microscopic Markov chain approach, we derive the evolutionary equations and validate them via Monte Carlo simulations. Key findings are as follows: (1) Disease interaction modes alter state probabilities distinctively compared to independent spreading; (2) Bistability persists despite multi-information interference, highlighting higher-order network effects; (3) Multi-information interactions show mode-specific patterns-increasing one information's transmission rate differently affects another depending on disease interaction modes; (4) Multi-information modulates both the duration of disease coexistence and the infection prevalence; moreover, elevating the transmission rate of one information type yields divergent impacts on the prevalence of the other disease across different interaction modes. These insights advance targeted intervention strategies for interacting epidemics.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0272381","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance epidemic management for co-occurring diseases, we investigate how multi-information diffusion impacts the transmission of interacting diseases under three interaction modes (inhibition, facilitation, asymmetry) in higher-order networks. We formulate a two-layer Unaware-Aware-Unaware-Susceptible-Infected-Susceptible model, comprising an upper information-diffusion layer and a lower disease-transmission layer with higher-order interactions represented by simplicial complexes. Extending the microscopic Markov chain approach, we derive the evolutionary equations and validate them via Monte Carlo simulations. Key findings are as follows: (1) Disease interaction modes alter state probabilities distinctively compared to independent spreading; (2) Bistability persists despite multi-information interference, highlighting higher-order network effects; (3) Multi-information interactions show mode-specific patterns-increasing one information's transmission rate differently affects another depending on disease interaction modes; (4) Multi-information modulates both the duration of disease coexistence and the infection prevalence; moreover, elevating the transmission rate of one information type yields divergent impacts on the prevalence of the other disease across different interaction modes. These insights advance targeted intervention strategies for interacting epidemics.

具有高阶效应的多信息相互作用疾病的协同进化建模。
为了加强对共发疾病的疫情管理,我们研究了在高阶网络中,多信息扩散在抑制、促进和不对称三种交互模式下对相互作用疾病传播的影响。我们建立了一个两层的无意识-意识-无意识-易感-感染-易感模型,包括一个上层的信息扩散层和一个下层的疾病传播层,其中高阶相互作用由简单复合体表示。扩展了微观马尔可夫链方法,推导了进化方程,并通过蒙特卡罗模拟验证了其正确性。主要发现如下:(1)与独立传播相比,疾病相互作用模式显著改变状态概率;(2)尽管存在多信息干扰,双稳性仍然存在,高阶网络效应突出;(3)多信息交互表现出模式特异性模式,不同疾病交互模式下,提高一种信息的传播速率对另一种信息的影响不同;(4)多信息调节疾病共存时间和感染流行;此外,在不同的交互模式下,提高一种信息类型的传播速率对另一种疾病的流行产生不同的影响。这些见解促进了针对相互作用的流行病的有针对性的干预战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信