Formation and suppression of hotspots in urban crime models with law enforcement.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-06-01 DOI:10.1063/5.0273298
Madi Yerlanov, Qi Wang, Nancy Rodríguez
{"title":"Formation and suppression of hotspots in urban crime models with law enforcement.","authors":"Madi Yerlanov, Qi Wang, Nancy Rodríguez","doi":"10.1063/5.0273298","DOIUrl":null,"url":null,"abstract":"<p><p>We analyze a system of partial differential equations introduced as a model for urban crime with law enforcement. This system is known to obtain spatially localized patterns representing crime hotspots. In this work, we obtain the amplitude equations that describe the hotspot pattern formation in the model using weakly nonlinear analysis techniques. In particular, we find the existence of super- and sub-critical pitchfork bifurcations. Moreover, we propose different suppression strategies and investigate numerically how the suggested approaches effectively eradicate the two types of hotspots. We highlight the challenges in weakly nonlinear analysis and the limitations of the proposed suppression mechanisms, emphasizing the need for further theoretical and practical work on this urban crime model with law enforcement.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0273298","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze a system of partial differential equations introduced as a model for urban crime with law enforcement. This system is known to obtain spatially localized patterns representing crime hotspots. In this work, we obtain the amplitude equations that describe the hotspot pattern formation in the model using weakly nonlinear analysis techniques. In particular, we find the existence of super- and sub-critical pitchfork bifurcations. Moreover, we propose different suppression strategies and investigate numerically how the suggested approaches effectively eradicate the two types of hotspots. We highlight the challenges in weakly nonlinear analysis and the limitations of the proposed suppression mechanisms, emphasizing the need for further theoretical and practical work on this urban crime model with law enforcement.

形成和打击城市犯罪热点与执法模式。
我们分析了一个偏微分方程组作为城市犯罪与执法的模型。已知该系统可以获得代表犯罪热点的空间局部模式。在这项工作中,我们利用弱非线性分析技术获得了描述模型中热点模式形成的振幅方程。特别地,我们发现了超临界和亚临界干草叉分叉的存在性。此外,我们提出了不同的抑制策略,并研究了所建议的方法如何有效地消除这两种类型的热点。我们强调了弱非线性分析的挑战和所提出的抑制机制的局限性,强调需要进一步的理论和实践工作与执法一起研究这个城市犯罪模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信