A Novel Aβ B-cell epitope Vaccine, Aβ1-10 with carrier protein OVA and KLH reduce Aβ-induced neuroinflammation mediated neuropathology in mouse model of Alzheimer’s disease
Jun Sung Park , Kyonghwan Choe , Riaz Ahmad , Hyun Young Park , Min Hwa Kang , Tae Ju Park , Myeong Ok Kim
{"title":"A Novel Aβ B-cell epitope Vaccine, Aβ1-10 with carrier protein OVA and KLH reduce Aβ-induced neuroinflammation mediated neuropathology in mouse model of Alzheimer’s disease","authors":"Jun Sung Park , Kyonghwan Choe , Riaz Ahmad , Hyun Young Park , Min Hwa Kang , Tae Ju Park , Myeong Ok Kim","doi":"10.1016/j.bbi.2025.06.001","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by amyloid-beta (Aβ) plaque deposition and neurofibrillary tangles, which collectively drive neuroinflammation, synaptic dysfunction, and cognitive decline. Here, we investigated whether a peptide epitope vaccine targeting the Aβ1–10 sequence could mitigate Aβ-induced pathology in AD mouse model. Three Aβ1–10 peptides, i.e. Aβ1–10-N, Aβ1–10-D1H, and Aβ1–10-S8R were synthesized, and Aβ1–10-S8R was further conjugated to ovalbumin (OVA) or keyhole limpet hemocyanin (KLH) to enhance immunogenicity. Among seven treatment groups, Aβ1–10-D1H and Aβ1–10-S8R, particularly when conjugated to OVA or KLH, effectively suppressed Aβ, amyloid-beta precursor protein (APP), and beta-secretase 1 (BACE-1) expression, decreased inflammatory cytokine production by astrocytes and microglia, and increased the levels of key synaptic markers (synaptophysin, synaptosomal-associated protein 23 [SNAP-23], postsynaptic density protein 95 [PSD-95]). Carrier protein conjugation also elevated immunoglobulin G (IgG) levels in the spleen, indicative of a robust humoral response. Taken together, these findings demonstrate that Aβ1–10-based immunization, especially with OVA or KLH conjugation, reduces Aβ-driven neuroinflammation, synaptic dysfunction, and memory deficits, suggesting a promising immunotherapeutic strategy for AD.</div></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":"129 ","pages":"Pages 196-205"},"PeriodicalIF":8.8000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159125002089","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by amyloid-beta (Aβ) plaque deposition and neurofibrillary tangles, which collectively drive neuroinflammation, synaptic dysfunction, and cognitive decline. Here, we investigated whether a peptide epitope vaccine targeting the Aβ1–10 sequence could mitigate Aβ-induced pathology in AD mouse model. Three Aβ1–10 peptides, i.e. Aβ1–10-N, Aβ1–10-D1H, and Aβ1–10-S8R were synthesized, and Aβ1–10-S8R was further conjugated to ovalbumin (OVA) or keyhole limpet hemocyanin (KLH) to enhance immunogenicity. Among seven treatment groups, Aβ1–10-D1H and Aβ1–10-S8R, particularly when conjugated to OVA or KLH, effectively suppressed Aβ, amyloid-beta precursor protein (APP), and beta-secretase 1 (BACE-1) expression, decreased inflammatory cytokine production by astrocytes and microglia, and increased the levels of key synaptic markers (synaptophysin, synaptosomal-associated protein 23 [SNAP-23], postsynaptic density protein 95 [PSD-95]). Carrier protein conjugation also elevated immunoglobulin G (IgG) levels in the spleen, indicative of a robust humoral response. Taken together, these findings demonstrate that Aβ1–10-based immunization, especially with OVA or KLH conjugation, reduces Aβ-driven neuroinflammation, synaptic dysfunction, and memory deficits, suggesting a promising immunotherapeutic strategy for AD.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.