Pentadecyl, an Active Component of Microalgae, Ameliorates Endoplasmic Reticulum Stress and Blue Light-Induced Cell Death in Mouse Retina-Derived 661W Cells.
{"title":"Pentadecyl, an Active Component of Microalgae, Ameliorates Endoplasmic Reticulum Stress and Blue Light-Induced Cell Death in Mouse Retina-Derived 661W Cells.","authors":"Mayuna Obayashi, Wataru Otsu, Kanta Yamazaki, Shinsuke Nakamura, Hideaki Ishikawa, Yasuko Sakata, Makoto Tsuboi, Hideshi Tsusaki, Masamitsu Shimazawa","doi":"10.1248/bpb.b24-00889","DOIUrl":null,"url":null,"abstract":"<p><p>Light stress is a risk factor leading to retinal diseases such as age-related macular degeneration. However, the mechanism underlying the stress response to light in the retina has yet to be elucidated. We have reported that exposure to blue light-emitting diode light induces excessive production of reactive oxygen species and activates the unfolded protein response, robustly increasing activating transcription factor 4 (ATF4) expression. These processes result in photoreceptor cell death. This study investigates the effects of Pentadecyl, a bioactive product obtained from Aurantiochytrium limacinum, on either chemical-induced or blue light-induced endoplasmic reticulum (ER) stress. Pentadecyl suppressed cell death induced by either thapsigargin or tunicamycin in a concentration-dependent manner. Pentadecyl also suppressed the expression of unfolded protein response target genes, including Atf4 and ER chaperones. Consistently, immunoblotting revealed that Pentadecyl suppressed the increased expression of ATF4 at the protein level. Pentadecyl also protected 661W cells from blue light-induced damage but did not protect against hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-induced oxidative stress. These results indicated that Pentadecyl has a novel function that protects against ER stress induced by photodamage.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"48 6","pages":"791-800"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b24-00889","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Light stress is a risk factor leading to retinal diseases such as age-related macular degeneration. However, the mechanism underlying the stress response to light in the retina has yet to be elucidated. We have reported that exposure to blue light-emitting diode light induces excessive production of reactive oxygen species and activates the unfolded protein response, robustly increasing activating transcription factor 4 (ATF4) expression. These processes result in photoreceptor cell death. This study investigates the effects of Pentadecyl, a bioactive product obtained from Aurantiochytrium limacinum, on either chemical-induced or blue light-induced endoplasmic reticulum (ER) stress. Pentadecyl suppressed cell death induced by either thapsigargin or tunicamycin in a concentration-dependent manner. Pentadecyl also suppressed the expression of unfolded protein response target genes, including Atf4 and ER chaperones. Consistently, immunoblotting revealed that Pentadecyl suppressed the increased expression of ATF4 at the protein level. Pentadecyl also protected 661W cells from blue light-induced damage but did not protect against hydrogen peroxide (H2O2)-induced oxidative stress. These results indicated that Pentadecyl has a novel function that protects against ER stress induced by photodamage.
期刊介绍:
Biological and Pharmaceutical Bulletin (Biol. Pharm. Bull.) began publication in 1978 as the Journal of Pharmacobio-Dynamics. It covers various biological topics in the pharmaceutical and health sciences. A fourth Society journal, the Journal of Health Science, was merged with Biol. Pharm. Bull. in 2012.
The main aim of the Society’s journals is to advance the pharmaceutical sciences with research reports, information exchange, and high-quality discussion. The average review time for articles submitted to the journals is around one month for first decision. The complete texts of all of the Society’s journals can be freely accessed through J-STAGE. The Society’s editorial committee hopes that the content of its journals will be useful to your research, and also invites you to submit your own work to the journals.