Optimization of multi-column chromatography for capture and polishing at high protein load.

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Tiago Castanheira Silva, Madelène Isaksson, Bernt Nilsson, Michel Eppink, Marcel Ottens
{"title":"Optimization of multi-column chromatography for capture and polishing at high protein load.","authors":"Tiago Castanheira Silva, Madelène Isaksson, Bernt Nilsson, Michel Eppink, Marcel Ottens","doi":"10.1002/btpr.70047","DOIUrl":null,"url":null,"abstract":"<p><p>Integrated Continuous Biomanufacturing reduces manufacturing costs while maintaining product quality. A key contributor to high biopharmaceutical costs, specifically monoclonal antibodies (mAbs), is chromatography. Protein A ligands are usually preferred but still expensive in the manufacturing context, and batch chromatography under-utilizes the columns' capacity, compromising productivity to maintain high yields. Continuous chromatography increases columns' Capacity Utilization (CU) without sacrificing yield or productivity. This work presents the in-silico optimization of a 3 Column Periodic Counter-current Chromatography (3C-PCC) of a capture and polishing step for mAbs from a high titer harvest (c<sub>mAb</sub> = 5 g/L). The 3C-PCC was modeled and Pareto-fronts for continuous and batch modes were used to optimize the 3C-PCC steps varying the flow rate and percentage of breakthrough achieved in the interconnected loading, maximizing Productivity and CU, for varying concentrations of mAb (batch mode concentration of 5 g/L and continuous mode concentration of 2.5, 5, 7.5, and 10 g/L). The shape of the breakthrough curve significantly impacts the optimization of 3C-PCC. The model output was validated for three different protein A ligands using a pure mAb solution. MAb Select SuRe pcc was selected to continuously capture mAb from a high-titer clarified cell culture supernatant (harvest). The product eluates were pooled and used for continuous polishing using a Cation-Exchange resin (CaptoS ImpAct). Experimental results validated model predictions (<7% deviation in the worst case) and a process with two 3C-PCC in sequence was proposed, with a productivity of approximately 100 mg/mL res/h.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e70047"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.70047","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Integrated Continuous Biomanufacturing reduces manufacturing costs while maintaining product quality. A key contributor to high biopharmaceutical costs, specifically monoclonal antibodies (mAbs), is chromatography. Protein A ligands are usually preferred but still expensive in the manufacturing context, and batch chromatography under-utilizes the columns' capacity, compromising productivity to maintain high yields. Continuous chromatography increases columns' Capacity Utilization (CU) without sacrificing yield or productivity. This work presents the in-silico optimization of a 3 Column Periodic Counter-current Chromatography (3C-PCC) of a capture and polishing step for mAbs from a high titer harvest (cmAb = 5 g/L). The 3C-PCC was modeled and Pareto-fronts for continuous and batch modes were used to optimize the 3C-PCC steps varying the flow rate and percentage of breakthrough achieved in the interconnected loading, maximizing Productivity and CU, for varying concentrations of mAb (batch mode concentration of 5 g/L and continuous mode concentration of 2.5, 5, 7.5, and 10 g/L). The shape of the breakthrough curve significantly impacts the optimization of 3C-PCC. The model output was validated for three different protein A ligands using a pure mAb solution. MAb Select SuRe pcc was selected to continuously capture mAb from a high-titer clarified cell culture supernatant (harvest). The product eluates were pooled and used for continuous polishing using a Cation-Exchange resin (CaptoS ImpAct). Experimental results validated model predictions (<7% deviation in the worst case) and a process with two 3C-PCC in sequence was proposed, with a productivity of approximately 100 mg/mL res/h.

高蛋白负载下多柱色谱捕获和抛光的优化。
集成的连续生物制造在保持产品质量的同时降低了制造成本。生物制药成本高的一个关键因素,特别是单克隆抗体(mab),是色谱法。蛋白A配体通常是首选的,但在生产环境中仍然昂贵,批层析法没有充分利用色谱柱的容量,影响了生产率以保持高产量。连续色谱法增加了色谱柱的容量利用率(CU),而不牺牲收率或生产率。本文介绍了高滴度收获(cmAb = 5 g/L)单克隆抗体捕获和抛光步骤的3柱周期性逆流色谱(3C-PCC)的计算机优化。对3C-PCC进行了建模,并使用连续和批量模式的pareto -front来优化3C-PCC步骤,改变流量和在相互连接的负载中实现的突破百分比,最大化生产力和CU,用于不同浓度的mAb(批量模式浓度为5 g/L,连续模式浓度为2.5,5,7.5和10 g/L)。突破曲线的形状对3C-PCC的优化有显著影响。使用纯mAb溶液对三种不同的蛋白A配体进行模型输出验证。选择pcc从高滴度澄清的细胞培养上清(收获)中连续捕获MAb。将产物洗脱液汇集并使用阳离子交换树脂(CaptoS ImpAct)进行连续抛光。实验结果验证了模型预测(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology Progress
Biotechnology Progress 工程技术-生物工程与应用微生物
CiteScore
6.50
自引率
3.40%
发文量
83
审稿时长
4 months
期刊介绍: Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries. Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信