{"title":"Optimization of multi-column chromatography for capture and polishing at high protein load.","authors":"Tiago Castanheira Silva, Madelène Isaksson, Bernt Nilsson, Michel Eppink, Marcel Ottens","doi":"10.1002/btpr.70047","DOIUrl":null,"url":null,"abstract":"<p><p>Integrated Continuous Biomanufacturing reduces manufacturing costs while maintaining product quality. A key contributor to high biopharmaceutical costs, specifically monoclonal antibodies (mAbs), is chromatography. Protein A ligands are usually preferred but still expensive in the manufacturing context, and batch chromatography under-utilizes the columns' capacity, compromising productivity to maintain high yields. Continuous chromatography increases columns' Capacity Utilization (CU) without sacrificing yield or productivity. This work presents the in-silico optimization of a 3 Column Periodic Counter-current Chromatography (3C-PCC) of a capture and polishing step for mAbs from a high titer harvest (c<sub>mAb</sub> = 5 g/L). The 3C-PCC was modeled and Pareto-fronts for continuous and batch modes were used to optimize the 3C-PCC steps varying the flow rate and percentage of breakthrough achieved in the interconnected loading, maximizing Productivity and CU, for varying concentrations of mAb (batch mode concentration of 5 g/L and continuous mode concentration of 2.5, 5, 7.5, and 10 g/L). The shape of the breakthrough curve significantly impacts the optimization of 3C-PCC. The model output was validated for three different protein A ligands using a pure mAb solution. MAb Select SuRe pcc was selected to continuously capture mAb from a high-titer clarified cell culture supernatant (harvest). The product eluates were pooled and used for continuous polishing using a Cation-Exchange resin (CaptoS ImpAct). Experimental results validated model predictions (<7% deviation in the worst case) and a process with two 3C-PCC in sequence was proposed, with a productivity of approximately 100 mg/mL res/h.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e70047"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.70047","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Integrated Continuous Biomanufacturing reduces manufacturing costs while maintaining product quality. A key contributor to high biopharmaceutical costs, specifically monoclonal antibodies (mAbs), is chromatography. Protein A ligands are usually preferred but still expensive in the manufacturing context, and batch chromatography under-utilizes the columns' capacity, compromising productivity to maintain high yields. Continuous chromatography increases columns' Capacity Utilization (CU) without sacrificing yield or productivity. This work presents the in-silico optimization of a 3 Column Periodic Counter-current Chromatography (3C-PCC) of a capture and polishing step for mAbs from a high titer harvest (cmAb = 5 g/L). The 3C-PCC was modeled and Pareto-fronts for continuous and batch modes were used to optimize the 3C-PCC steps varying the flow rate and percentage of breakthrough achieved in the interconnected loading, maximizing Productivity and CU, for varying concentrations of mAb (batch mode concentration of 5 g/L and continuous mode concentration of 2.5, 5, 7.5, and 10 g/L). The shape of the breakthrough curve significantly impacts the optimization of 3C-PCC. The model output was validated for three different protein A ligands using a pure mAb solution. MAb Select SuRe pcc was selected to continuously capture mAb from a high-titer clarified cell culture supernatant (harvest). The product eluates were pooled and used for continuous polishing using a Cation-Exchange resin (CaptoS ImpAct). Experimental results validated model predictions (<7% deviation in the worst case) and a process with two 3C-PCC in sequence was proposed, with a productivity of approximately 100 mg/mL res/h.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.