{"title":"Ion NMR for Biomolecular Systems.","authors":"Junji Iwahara","doi":"10.1016/j.jmb.2025.169285","DOIUrl":null,"url":null,"abstract":"<p><p>Counterions play a crucial role in biomolecular systems, influencing the structure and function of proteins and nucleic acids. Most counterions are not visible in experimentally determined biomolecular structures because the ions dynamically diffuse even while interacting with biomolecules. Over the past five decades, researchers have utilized <sup>23</sup>Na NMR to study sodium ions and their electrostatic interactions with biomolecules. Other inorganic ions as counterions of biomolecules have also been studied with <sup>25</sup>Mg, <sup>31</sup>P, <sup>35</sup>Cl, and <sup>39</sup>K NMR, for example. However, investigating the dynamic properties of ions around biomolecules using NMR has been challenging. Recently, there have been significant advances in NMR studies on the behavior of various biologically relevant ions around proteins and nucleic acids. Advances in probe hardware capable of generating strong field gradients have enabled NMR-based diffusion measurements of various inorganic ions interacting with biomolecules. The diffusion data have revealed the highly mobile nature of counterions around biomolecules and quantitative information about the release of counterions upon protein-DNA association. Quantitative NMR (qNMR) approaches have been developed to determine the number of counterions accumulated around a biomolecule. Applications of the diffusion and qNMR methods appear promising since the feasibility of ion NMR has already been demonstrated for large biomolecule systems, such as ribosomes, genomic DNA, biomolecular condensates, and living organisms.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169285"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12266291/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169285","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Counterions play a crucial role in biomolecular systems, influencing the structure and function of proteins and nucleic acids. Most counterions are not visible in experimentally determined biomolecular structures because the ions dynamically diffuse even while interacting with biomolecules. Over the past five decades, researchers have utilized 23Na NMR to study sodium ions and their electrostatic interactions with biomolecules. Other inorganic ions as counterions of biomolecules have also been studied with 25Mg, 31P, 35Cl, and 39K NMR, for example. However, investigating the dynamic properties of ions around biomolecules using NMR has been challenging. Recently, there have been significant advances in NMR studies on the behavior of various biologically relevant ions around proteins and nucleic acids. Advances in probe hardware capable of generating strong field gradients have enabled NMR-based diffusion measurements of various inorganic ions interacting with biomolecules. The diffusion data have revealed the highly mobile nature of counterions around biomolecules and quantitative information about the release of counterions upon protein-DNA association. Quantitative NMR (qNMR) approaches have been developed to determine the number of counterions accumulated around a biomolecule. Applications of the diffusion and qNMR methods appear promising since the feasibility of ion NMR has already been demonstrated for large biomolecule systems, such as ribosomes, genomic DNA, biomolecular condensates, and living organisms.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.