Impact of Multiple Phosphorylations on the Tau-R2/Tubulin Interface.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jules Marien, Chantal Prévost, Sophie Sacquin-Mora
{"title":"Impact of Multiple Phosphorylations on the Tau-R2/Tubulin Interface.","authors":"Jules Marien, Chantal Prévost, Sophie Sacquin-Mora","doi":"10.1021/acs.biochem.5c00109","DOIUrl":null,"url":null,"abstract":"<p><p>The phosphorylation of the microtubule-associated tau protein plays a key role in the regulation of its physiological function. In particular, tau hyperphosphorylation affects its binding to the tubulin surface, destabilizing the tau-microtubule interface and leading to the accumulation of fibrillar aggregates in the brain. In this work, we performed classical molecular dynamics simulations for the tau-R2/tubulin assembly with various phosphorylation states of serines 285, 289, and 293. We analyze the resulting trajectories to obtain a detailed view of the protein interface in the complex and the impact of tau phosphorylations on the stability of this assembly and on the mobility of the tubulin disordered C-terminal tails (CTTs). We show how the tubulin CTTs help maintain the tau-R2 fragment on the tubulin surface despite the destabilizing effect induced by phosphorylations. Conversely, tau phosphorylation affects the CTTs' flexibility and their potential activity as MAP-recruiting hooks. Furthermore, counterion-mediated bridges between the phosphate groups and tubulin glutamates also contribute to the binding of tau-R2 on the MT. Overall, the complex dynamics of this fuzzy phosphorylated assembly shed new light on the importance of the cytoplasmic environment in neurons in the context of Alzheimer's disease.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.5c00109","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The phosphorylation of the microtubule-associated tau protein plays a key role in the regulation of its physiological function. In particular, tau hyperphosphorylation affects its binding to the tubulin surface, destabilizing the tau-microtubule interface and leading to the accumulation of fibrillar aggregates in the brain. In this work, we performed classical molecular dynamics simulations for the tau-R2/tubulin assembly with various phosphorylation states of serines 285, 289, and 293. We analyze the resulting trajectories to obtain a detailed view of the protein interface in the complex and the impact of tau phosphorylations on the stability of this assembly and on the mobility of the tubulin disordered C-terminal tails (CTTs). We show how the tubulin CTTs help maintain the tau-R2 fragment on the tubulin surface despite the destabilizing effect induced by phosphorylations. Conversely, tau phosphorylation affects the CTTs' flexibility and their potential activity as MAP-recruiting hooks. Furthermore, counterion-mediated bridges between the phosphate groups and tubulin glutamates also contribute to the binding of tau-R2 on the MT. Overall, the complex dynamics of this fuzzy phosphorylated assembly shed new light on the importance of the cytoplasmic environment in neurons in the context of Alzheimer's disease.

多重磷酸化对Tau-R2/微管蛋白界面的影响。
微管相关tau蛋白的磷酸化在调节其生理功能中起着关键作用。特别是,tau过度磷酸化影响其与微管表面的结合,破坏tau-微管界面的稳定,导致脑内纤维聚集体的积累。在这项工作中,我们对丝氨酸285、289和293的不同磷酸化状态的tau-R2/微管蛋白组装进行了经典的分子动力学模拟。我们分析了由此产生的轨迹,以获得复合物中蛋白质界面的详细视图,以及tau磷酸化对该组装的稳定性和对微管蛋白紊乱c端尾部(CTTs)的移动性的影响。我们展示了微管蛋白CTTs如何帮助维持微管蛋白表面的tau-R2片段,尽管磷酸化会引起不稳定效应。相反,tau磷酸化会影响ctt的灵活性和它们作为map招募钩子的潜在活性。此外,磷酸基团和谷氨酸微管蛋白之间的反离子介导的桥也有助于tau-R2在MT上的结合。总的来说,这种模糊磷酸化组装的复杂动力学揭示了阿尔茨海默病背景下神经元胞质环境的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信