Michaela A. O'Hare, Carlien Rust, Stefanie Malan-Müller, Walter Pirovano, Christopher A. Lowry, Matsepo Ramaboli, Leigh L. van den Heuvel, Soraya Seedat, PGC-PTSD Microbiome Workgroup, Sian M. J. Hemmings
{"title":"Preliminary Insights Into the Relationship Between the Gut Microbiome and Host Genome in Posttraumatic Stress Disorder","authors":"Michaela A. O'Hare, Carlien Rust, Stefanie Malan-Müller, Walter Pirovano, Christopher A. Lowry, Matsepo Ramaboli, Leigh L. van den Heuvel, Soraya Seedat, PGC-PTSD Microbiome Workgroup, Sian M. J. Hemmings","doi":"10.1111/gbb.70025","DOIUrl":null,"url":null,"abstract":"<p>Posttraumatic stress disorder (PTSD) may develop following trauma exposure; however, not all trauma-exposed individuals develop PTSD, suggesting the presence of susceptibility and resilience factors. The gut microbiome and host genome, which are interconnected, have been implicated in the aetiology of PTSD. However, their interaction has yet to be investigated in a South African population. Using genome-wide genotype data and 16S rRNA (V4) gene amplicon sequencing data from 53 trauma-exposed controls and 74 PTSD cases, we observed no significant association between the host genome and summed abundance of <i>Mitsuokella, Odoribacter, Catenibacterium</i> and <i>Olsenella</i>, previously reported as associated with PTSD status in this cohort. However, <i>PROM2</i> rs2278067 T-allele was significantly positively associated with the summed relative abundance of these genera, but only in individuals with PTSD and not trauma-exposed controls (<i>p</i> < 0.014). Polygenic risk scores generated using genome-wide association study summary statistics from the PGC-PTSD Overall Freeze 2 were not predictive of gut microbial composition in this cohort. These preliminary results suggest a potential role for the interaction between genetic variation and gut microbial composition in the context of PTSD, underscoring the need for further investigation.</p>","PeriodicalId":50426,"journal":{"name":"Genes Brain and Behavior","volume":"24 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbb.70025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes Brain and Behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbb.70025","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Posttraumatic stress disorder (PTSD) may develop following trauma exposure; however, not all trauma-exposed individuals develop PTSD, suggesting the presence of susceptibility and resilience factors. The gut microbiome and host genome, which are interconnected, have been implicated in the aetiology of PTSD. However, their interaction has yet to be investigated in a South African population. Using genome-wide genotype data and 16S rRNA (V4) gene amplicon sequencing data from 53 trauma-exposed controls and 74 PTSD cases, we observed no significant association between the host genome and summed abundance of Mitsuokella, Odoribacter, Catenibacterium and Olsenella, previously reported as associated with PTSD status in this cohort. However, PROM2 rs2278067 T-allele was significantly positively associated with the summed relative abundance of these genera, but only in individuals with PTSD and not trauma-exposed controls (p < 0.014). Polygenic risk scores generated using genome-wide association study summary statistics from the PGC-PTSD Overall Freeze 2 were not predictive of gut microbial composition in this cohort. These preliminary results suggest a potential role for the interaction between genetic variation and gut microbial composition in the context of PTSD, underscoring the need for further investigation.
期刊介绍:
Genes, Brain and Behavior was launched in 2002 with the aim of publishing top quality research in behavioral and neural genetics in their broadest sense. The emphasis is on the analysis of the behavioral and neural phenotypes under consideration, the unifying theme being the genetic approach as a tool to increase our understanding of these phenotypes.
Genes Brain and Behavior is pleased to offer the following features:
8 issues per year
online submissions with first editorial decisions within 3-4 weeks and fast publication at Wiley-Blackwells
High visibility through its coverage by PubMed/Medline, Current Contents and other major abstracting and indexing services
Inclusion in the Wiley-Blackwell consortial license, extending readership to thousands of international libraries and institutions
A large and varied editorial board comprising of international specialists.