{"title":"Localized and Extended Phases in Square Moiré Patterns","authors":"C. Madroñero, G. A. Domínguez-Castro, R. Paredes","doi":"10.1002/andp.202400309","DOIUrl":null,"url":null,"abstract":"<p>Random defects do not constitute the unique source of electron localization in two dimensions. Lattice quasidisorder generated from two inplane superimposed rotated, main and secondary, square lattices, namely monolayers where moiré patterns are formed, leads to a sharp localized to delocalized single-particle transition. This is demonstrated here for both, discrete and continuum models of moiré patterns that arise as the twisting angle <span></span><math>\n <semantics>\n <mi>θ</mi>\n <annotation>$\\theta$</annotation>\n </semantics></math> between the main and the secondary lattices is varied in the interval <span></span><math>\n <semantics>\n <mrow>\n <mo>[</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>π</mi>\n <mo>/</mo>\n <mn>4</mn>\n <mo>]</mo>\n </mrow>\n <annotation>$[0, \\pi /4]$</annotation>\n </semantics></math>. Localized to delocalized transition is recognized as the moiré patterns depart from being perfect square crystals to non-crystalline structures. Extended single-particle states are found for rotation angles associated with Pythagorean triples that produce perfectly periodic structures. Conversely, angles not arising from such Pythagorean triples lead to non-commensurate or quasidisordered structures, thus originating localized states. These conclusions are drawn from a stationary analysis where the standard inverse participation ratio (IPR) parameter measuring localization allowed to detect the transition. While both, ground state and excited states are analyzed for the discrete model, where the secondary lattice is considered as a perturbation of the main one, the sharp transition is tracked back for the fundamental state in the continuous scenario where the secondary lattice is not a perturbation any more.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 6","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202400309","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400309","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Random defects do not constitute the unique source of electron localization in two dimensions. Lattice quasidisorder generated from two inplane superimposed rotated, main and secondary, square lattices, namely monolayers where moiré patterns are formed, leads to a sharp localized to delocalized single-particle transition. This is demonstrated here for both, discrete and continuum models of moiré patterns that arise as the twisting angle between the main and the secondary lattices is varied in the interval . Localized to delocalized transition is recognized as the moiré patterns depart from being perfect square crystals to non-crystalline structures. Extended single-particle states are found for rotation angles associated with Pythagorean triples that produce perfectly periodic structures. Conversely, angles not arising from such Pythagorean triples lead to non-commensurate or quasidisordered structures, thus originating localized states. These conclusions are drawn from a stationary analysis where the standard inverse participation ratio (IPR) parameter measuring localization allowed to detect the transition. While both, ground state and excited states are analyzed for the discrete model, where the secondary lattice is considered as a perturbation of the main one, the sharp transition is tracked back for the fundamental state in the continuous scenario where the secondary lattice is not a perturbation any more.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.