{"title":"HfSe2 Monolayer as a Two-Dimensional Anode Material for Magnesium-Ion Batteries: First-Principles Study","authors":"Ning Liu, Xiaokun Li","doi":"10.1002/qua.70070","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The advancement of magnesium ion batteries necessitates the exploration of novel high-capacity anode materials. This research examines the viability of HfSe<sub>2</sub> monolayers as a potential anode material for magnesium ion batteries, utilizing first-principles calculations. The findings indicate that HfSe<sub>2</sub> demonstrates substantial electrical conductivity as an electrode material, with its electronic conductivity remaining unaffected by applied strain. Additionally, a low diffusion barrier of 0.071 eV contributes to its high rate performance. Notably, HfSe<sub>2</sub> possesses a significant theoretical capacity of 480.735 mAh/g, accompanied by a relatively low open circuit voltage of 0.203 V. These results provide insights into the magnesium storage mechanism of HfSe<sub>2</sub> monolayers and inform the design of magnesium ion batteries.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 12","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.70070","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of magnesium ion batteries necessitates the exploration of novel high-capacity anode materials. This research examines the viability of HfSe2 monolayers as a potential anode material for magnesium ion batteries, utilizing first-principles calculations. The findings indicate that HfSe2 demonstrates substantial electrical conductivity as an electrode material, with its electronic conductivity remaining unaffected by applied strain. Additionally, a low diffusion barrier of 0.071 eV contributes to its high rate performance. Notably, HfSe2 possesses a significant theoretical capacity of 480.735 mAh/g, accompanied by a relatively low open circuit voltage of 0.203 V. These results provide insights into the magnesium storage mechanism of HfSe2 monolayers and inform the design of magnesium ion batteries.
期刊介绍:
Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.