Miodrag Glumac, Jean-Luc Gennisson, Vincent Mathieu
{"title":"Ultrasound Imaging of Artificial Tongues During Compression and Shearing of Food Gels on a Biomimetic Testing Bench","authors":"Miodrag Glumac, Jean-Luc Gennisson, Vincent Mathieu","doi":"10.1111/jtxs.70030","DOIUrl":null,"url":null,"abstract":"<p>Characterizing the deformations undergone by the tongue during food oral processing could help to better understand how texture sensations are perceived. In this article, we propose to study the potential of ultrasound (US) imaging to monitor the deformations undergone by artificial tongues during compression and shear of agar food gels. Four polyvinyl alcohol cryogels were used as artificial tongues (two levels of roughness and two levels of stiffness), while three agar gels of different concentrations were considered as model foods. Throughout the experiments, US images were acquired from a transducer array positioned underneath the artificial tongue, while force signals were obtained from a multi-axes sensor located above an artificial palate plate. Image analysis first consisted of tracing the contour of the dorsal surface of the artificial tongue. It was thus possible to observe how the deformations are distributed between the artificial tongues and the agar gels and to follow over time the heterogeneity of this distribution along the axis of the transducer array. Then, Particle Image Velocimetry (PIV) analysis was conducted to characterize the velocity fields related to deformations within the artificial tongue. In particular, the horizontal component of the velocity was studied during the shear movements and allowed one to distinguish static and dynamic friction phases, and to highlight the deformation gradients in the bulk of the artificial tongue. Such US method can provide a better understanding of the impact of the mechanical properties of food gels on the stimulation of mechanoreceptors responsible for translating mechanical stimuli into sensory perceptions.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"56 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtxs.70030","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of texture studies","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtxs.70030","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Characterizing the deformations undergone by the tongue during food oral processing could help to better understand how texture sensations are perceived. In this article, we propose to study the potential of ultrasound (US) imaging to monitor the deformations undergone by artificial tongues during compression and shear of agar food gels. Four polyvinyl alcohol cryogels were used as artificial tongues (two levels of roughness and two levels of stiffness), while three agar gels of different concentrations were considered as model foods. Throughout the experiments, US images were acquired from a transducer array positioned underneath the artificial tongue, while force signals were obtained from a multi-axes sensor located above an artificial palate plate. Image analysis first consisted of tracing the contour of the dorsal surface of the artificial tongue. It was thus possible to observe how the deformations are distributed between the artificial tongues and the agar gels and to follow over time the heterogeneity of this distribution along the axis of the transducer array. Then, Particle Image Velocimetry (PIV) analysis was conducted to characterize the velocity fields related to deformations within the artificial tongue. In particular, the horizontal component of the velocity was studied during the shear movements and allowed one to distinguish static and dynamic friction phases, and to highlight the deformation gradients in the bulk of the artificial tongue. Such US method can provide a better understanding of the impact of the mechanical properties of food gels on the stimulation of mechanoreceptors responsible for translating mechanical stimuli into sensory perceptions.
期刊介绍:
The Journal of Texture Studies is a fully peer-reviewed international journal specialized in the physics, physiology, and psychology of food oral processing, with an emphasis on the food texture and structure, sensory perception and mouth-feel, food oral behaviour, food liking and preference. The journal was first published in 1969 and has been the primary source for disseminating advances in knowledge on all of the sciences that relate to food texture. In recent years, Journal of Texture Studies has expanded its coverage to a much broader range of texture research and continues to publish high quality original and innovative experimental-based (including numerical analysis and simulation) research concerned with all aspects of eating and food preference.
Journal of Texture Studies welcomes research articles, research notes, reviews, discussion papers, and communications from contributors of all relevant disciplines. Some key coverage areas/topics include (but not limited to):
• Physical, mechanical, and micro-structural principles of food texture
• Oral physiology
• Psychology and brain responses of eating and food sensory
• Food texture design and modification for specific consumers
• In vitro and in vivo studies of eating and swallowing
• Novel technologies and methodologies for the assessment of sensory properties
• Simulation and numerical analysis of eating and swallowing