Zhoufeng Liu, Bingrui Li, Miao Yu, Guangshuai Gao, Chunlei Li
{"title":"Enhanced Foreground–Background Discrimination for Weakly Supervised Semantic Segmentation","authors":"Zhoufeng Liu, Bingrui Li, Miao Yu, Guangshuai Gao, Chunlei Li","doi":"10.1049/cvi2.70029","DOIUrl":null,"url":null,"abstract":"<p>Weakly supervised semantic segmentation (WSSS) methods are extensively studied due to the availability of image-level annotations. Relying on class activation maps (CAMs) derived from original classification networks often suffers from issues such as inaccurate object localization, incomplete object regions, and the inclusion of confusing background pixels. To address these issues, we propose a two-stage method that enhances the foreground–background discriminative ability in a global context (FB-DGC). Specifically, a cross-domain feature calibration module (CFCM) is first proposed to calibrate foreground and background salient features using global spatial location information, thereby expanding foreground features while mitigating the impact of inaccurate localization in class activation regions. A class-specific distance module (CSDM) is further adopted to facilitate the separation of foreground–background features, thereby enhancing the activation of target regions, which alleviates the over-smoothing of features produced by the network and mitigates issues associated with confused features. In addition, an adaptive edge feature extraction (AEFE) strategy is proposed to identify target features in candidate boundary regions and capture missed features, compensating for drawbacks in recognising the co-occurrence of multiple targets. The proposed method is extensively evaluated on the challenging PASCAL VOC 2012 and MS COCO 2014 datasets, demonstrating its feasibility and superiority.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70029","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70029","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Weakly supervised semantic segmentation (WSSS) methods are extensively studied due to the availability of image-level annotations. Relying on class activation maps (CAMs) derived from original classification networks often suffers from issues such as inaccurate object localization, incomplete object regions, and the inclusion of confusing background pixels. To address these issues, we propose a two-stage method that enhances the foreground–background discriminative ability in a global context (FB-DGC). Specifically, a cross-domain feature calibration module (CFCM) is first proposed to calibrate foreground and background salient features using global spatial location information, thereby expanding foreground features while mitigating the impact of inaccurate localization in class activation regions. A class-specific distance module (CSDM) is further adopted to facilitate the separation of foreground–background features, thereby enhancing the activation of target regions, which alleviates the over-smoothing of features produced by the network and mitigates issues associated with confused features. In addition, an adaptive edge feature extraction (AEFE) strategy is proposed to identify target features in candidate boundary regions and capture missed features, compensating for drawbacks in recognising the co-occurrence of multiple targets. The proposed method is extensively evaluated on the challenging PASCAL VOC 2012 and MS COCO 2014 datasets, demonstrating its feasibility and superiority.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf