Intensification of rAAV Production Based on HEK293 Cell Transient Transfection

IF 3.1 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Ye Zhang, Emil Sundäng Peters, Olalekan Daramola, Trudy Ann Tucker, Johan Rockberg, Diane Hatton, Véronique Chotteau
{"title":"Intensification of rAAV Production Based on HEK293 Cell Transient Transfection","authors":"Ye Zhang,&nbsp;Emil Sundäng Peters,&nbsp;Olalekan Daramola,&nbsp;Trudy Ann Tucker,&nbsp;Johan Rockberg,&nbsp;Diane Hatton,&nbsp;Véronique Chotteau","doi":"10.1002/biot.70020","DOIUrl":null,"url":null,"abstract":"<p>Recombinant adeno-associated virus (rAAV) vectors are widely used in gene therapies, but the rapidly increasing global demand has created a significant challenge for rAAV manufacturing, where production capacity remains a critical bottleneck. To address this, strategies to enhance production yields are urgently needed. This study presents an innovative approach to rAAV production using high cell density (HCD) stirred tank perfusion culture. rAAV1 and rAAV9 vectors carrying GFP cargo were used as models, with triple-plasmid transfection performed in suspension HEK293 cells at a high viable cell density of 50 million cells/mL in culture then maintained at ≥ 30 million cells/mL throughout production. Transfection and production parameters were first optimized in a 5 mL pseudo-perfusion spin tube screening system at HCD. A proof-of-concept was then demonstrated by scaling up to a 200 mL stirred tank bioreactor (STR) in perfusion mode. This intensified process achieved rAAV9 production levels per cell comparable to those observed in reference shake flask cultures at 1 million cells/mL. By implementing transfection at very HCD in a perfusion-based STR, this approach has the potential to significantly enhance rAAV volumetric production capacity, providing a promising solution to meet the growing demand for gene therapies.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.70020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.70020","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Recombinant adeno-associated virus (rAAV) vectors are widely used in gene therapies, but the rapidly increasing global demand has created a significant challenge for rAAV manufacturing, where production capacity remains a critical bottleneck. To address this, strategies to enhance production yields are urgently needed. This study presents an innovative approach to rAAV production using high cell density (HCD) stirred tank perfusion culture. rAAV1 and rAAV9 vectors carrying GFP cargo were used as models, with triple-plasmid transfection performed in suspension HEK293 cells at a high viable cell density of 50 million cells/mL in culture then maintained at ≥ 30 million cells/mL throughout production. Transfection and production parameters were first optimized in a 5 mL pseudo-perfusion spin tube screening system at HCD. A proof-of-concept was then demonstrated by scaling up to a 200 mL stirred tank bioreactor (STR) in perfusion mode. This intensified process achieved rAAV9 production levels per cell comparable to those observed in reference shake flask cultures at 1 million cells/mL. By implementing transfection at very HCD in a perfusion-based STR, this approach has the potential to significantly enhance rAAV volumetric production capacity, providing a promising solution to meet the growing demand for gene therapies.

Abstract Image

瞬时转染HEK293细胞增强rAAV产生的研究
重组腺相关病毒(rAAV)载体广泛用于基因治疗,但快速增长的全球需求给rAAV制造带来了重大挑战,其中生产能力仍然是一个关键瓶颈。为解决这一问题,迫切需要提高产量的战略。本研究提出了一种利用高密度搅拌槽(HCD)灌注培养生产rAAV的创新方法。以携带GFP货物的rAAV1和rAAV9载体为模型,在悬浮HEK293细胞中进行三质粒转染,培养时高活细胞密度为5000万细胞/mL,整个生产过程中保持≥3000万细胞/mL。首先在HCD的5ml伪灌注自旋管筛选系统中优化转染和生产参数。然后通过在灌注模式下放大到200ml搅拌槽生物反应器(STR)来验证概念。这种强化工艺使每个细胞的rAAV9产量水平与参考摇瓶培养中观察到的100万个细胞/mL相当。通过在基于灌注的STR中以非常高的HCD进行转染,该方法有可能显著提高rAAV的体积生产能力,为满足日益增长的基因治疗需求提供了一个有希望的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信