{"title":"Rethinking Sensory Information Processing: The Essential Role of Astrocytes","authors":"Juliana M. Rosa, Juan Aguilar","doi":"10.1111/jnc.70113","DOIUrl":null,"url":null,"abstract":"<p>One of the most fundamental abilities of the nervous system is to perceive, integrate, and process sensory inputs from the external environment. This physiological ability, known as sensory information processing, has been extensively studied using diverse experimental models, ranging from in vivo vertebrates and invertebrates to in vitro and computational approaches. Most of these seminal studies have primarily focused on neuronal components, providing critical insights into the principles of excitation and inhibition circuit dynamics and anatomical wiring. However, studies in the last decade have shed light on the important role of astrocytes in sensory information processing. The astrocytic effect on controlling the strength and gain of sensory neuronal responses is particularly evident in awake and freely moving animals, where their modulation has a direct influence on behavioral output, positioning them as cell targets to understand sensory processing as a whole in brain (dys)function. In this review, we draw attention to new research that casts doubt on the conventional neurocentric theories of sensory processing and highlights the growing influence of astrocytes on how sensory processing is shaped across modalities.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 6","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.70113","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.70113","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
One of the most fundamental abilities of the nervous system is to perceive, integrate, and process sensory inputs from the external environment. This physiological ability, known as sensory information processing, has been extensively studied using diverse experimental models, ranging from in vivo vertebrates and invertebrates to in vitro and computational approaches. Most of these seminal studies have primarily focused on neuronal components, providing critical insights into the principles of excitation and inhibition circuit dynamics and anatomical wiring. However, studies in the last decade have shed light on the important role of astrocytes in sensory information processing. The astrocytic effect on controlling the strength and gain of sensory neuronal responses is particularly evident in awake and freely moving animals, where their modulation has a direct influence on behavioral output, positioning them as cell targets to understand sensory processing as a whole in brain (dys)function. In this review, we draw attention to new research that casts doubt on the conventional neurocentric theories of sensory processing and highlights the growing influence of astrocytes on how sensory processing is shaped across modalities.
期刊介绍:
Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.