Remya Remani Sathyan, Hariharan Sreedharan, Hari Prasad, Gopakumar Chandrasekhara Menon
{"title":"ChromSeg-P3GAN: A Benchmark Dataset and Pix2Pix Patch Generative Adversarial Network for Chromosome Segmentation","authors":"Remya Remani Sathyan, Hariharan Sreedharan, Hari Prasad, Gopakumar Chandrasekhara Menon","doi":"10.1002/ima.70133","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Chromosome image analysis with automated karyotyping systems (AKS) is crucial for the diagnosis and prognosis of hematologic malignancies and genetic disorders. However, the partial or complete occlusion of nonrigid chromosome structures significantly limits the performance of AKS. To address these challenges, this paper extends the Pix2Pix generative adversarial network (GAN) model for the first time to segment overlapping and touching chromosomes. A new publicly available dataset of G-banded metaphase chromosome images has been prepared specifically for this study, marking the first use of GAN-based methods on such data, as previous research has been confined to FISH image datasets. A comprehensive comparative study of Pix2Pix GAN objective functions—including binary cross entropy (BCE) loss with and without logit, Tversky loss, Focal Tversky (FT) loss with different gamma values, and Dice loss—has been conducted. To address class imbalance and segmentation challenges, a custom loss function combining BCE with logit, Tversky loss, and L1 loss is introduced, which yields superior performance. Furthermore, a 5-fold cross-validation is performed to evaluate the stability and performance of the models. The top five models from the comparative study are tested on a completely unseen dataset, and their performance is visualized using a boxplot. The proposed model demonstrates the best segmentation performance, with Intersection over Union (IoU) of 0.9247, Dice coefficient of 0.9596, and recall of 0.9687. The results validate the robustness and effectiveness of the proposed approach for addressing overlapping and touching chromosome segmentation in AKS.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70133","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Chromosome image analysis with automated karyotyping systems (AKS) is crucial for the diagnosis and prognosis of hematologic malignancies and genetic disorders. However, the partial or complete occlusion of nonrigid chromosome structures significantly limits the performance of AKS. To address these challenges, this paper extends the Pix2Pix generative adversarial network (GAN) model for the first time to segment overlapping and touching chromosomes. A new publicly available dataset of G-banded metaphase chromosome images has been prepared specifically for this study, marking the first use of GAN-based methods on such data, as previous research has been confined to FISH image datasets. A comprehensive comparative study of Pix2Pix GAN objective functions—including binary cross entropy (BCE) loss with and without logit, Tversky loss, Focal Tversky (FT) loss with different gamma values, and Dice loss—has been conducted. To address class imbalance and segmentation challenges, a custom loss function combining BCE with logit, Tversky loss, and L1 loss is introduced, which yields superior performance. Furthermore, a 5-fold cross-validation is performed to evaluate the stability and performance of the models. The top five models from the comparative study are tested on a completely unseen dataset, and their performance is visualized using a boxplot. The proposed model demonstrates the best segmentation performance, with Intersection over Union (IoU) of 0.9247, Dice coefficient of 0.9596, and recall of 0.9687. The results validate the robustness and effectiveness of the proposed approach for addressing overlapping and touching chromosome segmentation in AKS.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.