Yuang Chen;Chang Wu;Fangyu Zhang;Chengdi Lu;Yongsheng Huang;Hancheng Lu
{"title":"Topology-Aware Microservice Architecture in Edge Networks: Deployment Optimization and Implementation","authors":"Yuang Chen;Chang Wu;Fangyu Zhang;Chengdi Lu;Yongsheng Huang;Hancheng Lu","doi":"10.1109/TMC.2025.3539312","DOIUrl":null,"url":null,"abstract":"As a ubiquitous deployment paradigm, integrating microservice architecture (MSA) into edge networks promises to enhance the flexibility and scalability of services. However, it also presents significant challenges stemming from dispersed node locations and intricate network topologies. In this paper, we have proposed a topology-aware MSA characterized by a three-tier network traffic model encompassing the service, microservices, and edge node layers. This model meticulously characterizes the complex dependencies between edge network topologies and microservices, mapping microservice deployment onto link traffic to accurately estimate communication delay. Building upon this model, we have formulated a weighted sum communication delay optimization problem considering different types of services. Then, a novel topology-aware and individual-adaptive microservices deployment (TAIA-MD) scheme is proposed to solve the problem efficiently, which accurately senses the network topology and incorporates an individual-adaptive mechanism in a genetic algorithm to accelerate the convergence and avoid local optima. Extensive simulations show that, compared to the existing deployment schemes, TAIA-MD improves the communication delay performance by approximately 30% to 60% and effectively enhances the overall network performance. Furthermore, we implement the TAIA-MD scheme on a practical microservice physical platform. The experimental results demonstrate that TAIA-MD achieves superior robustness in withstanding link failures and network fluctuations.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 7","pages":"6090-6105"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10876766/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
As a ubiquitous deployment paradigm, integrating microservice architecture (MSA) into edge networks promises to enhance the flexibility and scalability of services. However, it also presents significant challenges stemming from dispersed node locations and intricate network topologies. In this paper, we have proposed a topology-aware MSA characterized by a three-tier network traffic model encompassing the service, microservices, and edge node layers. This model meticulously characterizes the complex dependencies between edge network topologies and microservices, mapping microservice deployment onto link traffic to accurately estimate communication delay. Building upon this model, we have formulated a weighted sum communication delay optimization problem considering different types of services. Then, a novel topology-aware and individual-adaptive microservices deployment (TAIA-MD) scheme is proposed to solve the problem efficiently, which accurately senses the network topology and incorporates an individual-adaptive mechanism in a genetic algorithm to accelerate the convergence and avoid local optima. Extensive simulations show that, compared to the existing deployment schemes, TAIA-MD improves the communication delay performance by approximately 30% to 60% and effectively enhances the overall network performance. Furthermore, we implement the TAIA-MD scheme on a practical microservice physical platform. The experimental results demonstrate that TAIA-MD achieves superior robustness in withstanding link failures and network fluctuations.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.