{"title":"ZeroTracer: In-Band eBPF-Based Trace Generator With Zero Instrumentation for Microservice Systems","authors":"Wanqi Yang;Pengfei Chen;Kai Liu;Huxing Zhang","doi":"10.1109/TPDS.2025.3571934","DOIUrl":null,"url":null,"abstract":"Microservice enables agility in modern cloud-native applications but introduces challenges in fault troubleshooting due to its complex service coordination and cooperation. To tackle these challenges, distributed tracing has emerged for end-to-end request tracing and system understanding. However, existing tracing solutions often suffer from code instrumentation, trace loss and inaccuracy. To overcome these limitations, we introduce ZeroTracer, an in-kernel online distributed tracing system equipped with an eBPF-based (extended Berkeley Packet Filter) trace generator. ZeroTracer tailors for tracking HTTP requests due to its popularity in microservice systems. In our evaluations, ZeroTracer achieves remarkable trace accuracy (i.e., over 91% ) and maintains stable performance under different workload concurrency. Moreover, ZeroTracer outperforms other non-invasive approaches which fail to reconcile accurate request causality. Notably, ZeroTracer effectively tracks end-to-end requests in multi-threaded microservice applications, which is absent in existing invasive distributed tracing systems with third-party library instrumentation. Moreover, ZeroTracer introduces a negligible overhead, with latency increasing by only 0.5% –1.2% and a modest 3% –5.8% increase in CPU and memory consumption.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 7","pages":"1478-1494"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11007268/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Microservice enables agility in modern cloud-native applications but introduces challenges in fault troubleshooting due to its complex service coordination and cooperation. To tackle these challenges, distributed tracing has emerged for end-to-end request tracing and system understanding. However, existing tracing solutions often suffer from code instrumentation, trace loss and inaccuracy. To overcome these limitations, we introduce ZeroTracer, an in-kernel online distributed tracing system equipped with an eBPF-based (extended Berkeley Packet Filter) trace generator. ZeroTracer tailors for tracking HTTP requests due to its popularity in microservice systems. In our evaluations, ZeroTracer achieves remarkable trace accuracy (i.e., over 91% ) and maintains stable performance under different workload concurrency. Moreover, ZeroTracer outperforms other non-invasive approaches which fail to reconcile accurate request causality. Notably, ZeroTracer effectively tracks end-to-end requests in multi-threaded microservice applications, which is absent in existing invasive distributed tracing systems with third-party library instrumentation. Moreover, ZeroTracer introduces a negligible overhead, with latency increasing by only 0.5% –1.2% and a modest 3% –5.8% increase in CPU and memory consumption.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.