Qingcai Jiang;Zhenwei Cao;Junshi Chen;Xinming Qin;Wei Hu;Hong An;Jinlong Yang
{"title":"PWDFT-SW: Extending the Limit of Plane-Wave DFT Calculations to 16K Atoms on the New Sunway Supercomputer","authors":"Qingcai Jiang;Zhenwei Cao;Junshi Chen;Xinming Qin;Wei Hu;Hong An;Jinlong Yang","doi":"10.1109/TPDS.2025.3557621","DOIUrl":null,"url":null,"abstract":"First-principles density functional theory (DFT) with plane wave (PW) basis set is the most widely used method in quantum mechanical material simulations due to its advantages in accuracy and universality. However, a perceived drawback of PW-based DFT calculations is their substantial computational cost and memory usage, which currently limits their ability to simulate large-scale complex systems containing thousands of atoms. This situation is exacerbated in the new Sunway supercomputer, where each process is limited to a mere 16 GB of memory. Herein, we present a novel parallel implementation of plane wave density functional theory on the new Sunway supercomputer (PWDFT-SW). PWDFT-SW fully extracts the benefits of Sunway supercomputer by extensively refactoring and calibrating our algorithms to align with the system characteristics of the Sunway system. Through extensive numerical experiments, we demonstrate that our methods can substantially decrease both computational costs and memory usage. Our optimizations translate to a speedup of 64.8x for a physical system containing 4,096 silicon atoms, enabling us to push the limit of PW-based DFT calculations to large-scale systems containing 16,384 carbon atoms.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 7","pages":"1495-1508"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10955331/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
First-principles density functional theory (DFT) with plane wave (PW) basis set is the most widely used method in quantum mechanical material simulations due to its advantages in accuracy and universality. However, a perceived drawback of PW-based DFT calculations is their substantial computational cost and memory usage, which currently limits their ability to simulate large-scale complex systems containing thousands of atoms. This situation is exacerbated in the new Sunway supercomputer, where each process is limited to a mere 16 GB of memory. Herein, we present a novel parallel implementation of plane wave density functional theory on the new Sunway supercomputer (PWDFT-SW). PWDFT-SW fully extracts the benefits of Sunway supercomputer by extensively refactoring and calibrating our algorithms to align with the system characteristics of the Sunway system. Through extensive numerical experiments, we demonstrate that our methods can substantially decrease both computational costs and memory usage. Our optimizations translate to a speedup of 64.8x for a physical system containing 4,096 silicon atoms, enabling us to push the limit of PW-based DFT calculations to large-scale systems containing 16,384 carbon atoms.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.