{"title":"Fast Coding Mode Decision for Intra Prediction in VVC SCC","authors":"Dayong Wang;Weihong Liu;Zeyu Zhou;Xin Lu;Jinhua Liu;Hui Guo;Ce Zhu","doi":"10.1109/TBC.2025.3541773","DOIUrl":null,"url":null,"abstract":"Currently, screen content video applications are widely used in our daily lives. As the latest Screen Content Coding (SCC) standard, Versatile Video Coding (VVC) SCC employs a quad-tree plus nested multi-type tree (QTMT) coding structure and various screen content coding modes (CMs). This design enhances the coding efficiency of VVC SCC but also results in a highly complex coding process, which significantly hinders the broader adoption of screen content video technology. Consequently, improving the coding speed of VVC SCC is highly desirable. In this paper, we propose a fast CM and transform decision algorithm for Intra prediction in VVC SCC. Specifically, we initially use Convolutional Neural Networks (CNNs) to predict content types for all Coding Units (CUs). Subsequently, we predict candidate CMs for CUs based on the CM distributions of different content types. We then select the Sum of Absolute Transformed Difference (SATD) as a feature and use a naive Bayes classifier to skip unlikely Intra mode early. Finally, we terminate Block-based Differential Pulse-Code Modulation (BDPCM) early and then select the best transform type in Intra mode prediction to improve coding speed. Experimental results demonstrate that the proposed algorithm improves coding speed by an average of 39.28%, with the BDBR increasing by 0.80%.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"71 2","pages":"506-516"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11017522/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, screen content video applications are widely used in our daily lives. As the latest Screen Content Coding (SCC) standard, Versatile Video Coding (VVC) SCC employs a quad-tree plus nested multi-type tree (QTMT) coding structure and various screen content coding modes (CMs). This design enhances the coding efficiency of VVC SCC but also results in a highly complex coding process, which significantly hinders the broader adoption of screen content video technology. Consequently, improving the coding speed of VVC SCC is highly desirable. In this paper, we propose a fast CM and transform decision algorithm for Intra prediction in VVC SCC. Specifically, we initially use Convolutional Neural Networks (CNNs) to predict content types for all Coding Units (CUs). Subsequently, we predict candidate CMs for CUs based on the CM distributions of different content types. We then select the Sum of Absolute Transformed Difference (SATD) as a feature and use a naive Bayes classifier to skip unlikely Intra mode early. Finally, we terminate Block-based Differential Pulse-Code Modulation (BDPCM) early and then select the best transform type in Intra mode prediction to improve coding speed. Experimental results demonstrate that the proposed algorithm improves coding speed by an average of 39.28%, with the BDBR increasing by 0.80%.
期刊介绍:
The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”