Integrating micro and macro traffic control for mixed autonomy traffic

IF 14.5 Q1 TRANSPORTATION
Tingting Fan , Jieming Chen , Edward Chung
{"title":"Integrating micro and macro traffic control for mixed autonomy traffic","authors":"Tingting Fan ,&nbsp;Jieming Chen ,&nbsp;Edward Chung","doi":"10.1016/j.commtr.2025.100188","DOIUrl":null,"url":null,"abstract":"<div><div>During the transition to fully autonomous traffic systems, managing mixed traffic consisting of connected automated vehicles (CAVs) and human-driven vehicles (HDVs) is imperative. Existing macroscopic and microscopic strategies have shown effectiveness in alleviating highway congestion. However, the integration of these strategies for mixed autonomy traffic remains under-explored. This study proposes a hybrid flow and trajectory control (HFTC) strategy that combines a macroscopic control, ramp metering (RM), with a microscopic control, cooperative merging (CM) for CAV trajectory optimization in mixed traffic scenarios. Specifically, the RM control considers CAV-penetration-dependent dynamics to regulate ramp flow, and the CM utilizes a centralized optimization model to enhance CAV merging trajectories. Independently implementing RM or CM proved effective only under heavy or moderate traffic flow, whereas our proposed integrated strategy, HFTC, demonstrated greater adaptability and suitability under various traffic conditions. Additionally, the impacts of CAV penetration rates and traffic flows on performance of different control strategies are thoroughly explored. Simulation results indicate that under low and moderate traffic conditions, microscopic control can be comparable to macroscopic control given sufficient CAV integration, while under heavy traffic flows, macroscopic control cannot be replaced by microscopic control.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100188"},"PeriodicalIF":14.5000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424725000289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

During the transition to fully autonomous traffic systems, managing mixed traffic consisting of connected automated vehicles (CAVs) and human-driven vehicles (HDVs) is imperative. Existing macroscopic and microscopic strategies have shown effectiveness in alleviating highway congestion. However, the integration of these strategies for mixed autonomy traffic remains under-explored. This study proposes a hybrid flow and trajectory control (HFTC) strategy that combines a macroscopic control, ramp metering (RM), with a microscopic control, cooperative merging (CM) for CAV trajectory optimization in mixed traffic scenarios. Specifically, the RM control considers CAV-penetration-dependent dynamics to regulate ramp flow, and the CM utilizes a centralized optimization model to enhance CAV merging trajectories. Independently implementing RM or CM proved effective only under heavy or moderate traffic flow, whereas our proposed integrated strategy, HFTC, demonstrated greater adaptability and suitability under various traffic conditions. Additionally, the impacts of CAV penetration rates and traffic flows on performance of different control strategies are thoroughly explored. Simulation results indicate that under low and moderate traffic conditions, microscopic control can be comparable to macroscopic control given sufficient CAV integration, while under heavy traffic flows, macroscopic control cannot be replaced by microscopic control.
混合自治交通宏微观一体化控制
在向全自动交通系统过渡的过程中,管理由联网自动驾驶汽车(cav)和人类驾驶汽车(HDVs)组成的混合交通势在必行。现有的宏观和微观策略在缓解公路拥堵方面都显示出了效果。然而,将这些策略整合到混合自主交通中仍有待探索。针对混合交通场景下CAV的轨迹优化问题,提出了一种将宏观控制匝道计量(RM)与微观控制协同归并(CM)相结合的流轨混合控制策略。具体来说,RM控制考虑了CAV穿透相关的动力学来调节坡道流,CM利用集中优化模型来增强CAV合并轨迹。独立实施RM或CM被证明仅在交通流量较大或中等的情况下有效,而我们提出的综合策略HFTC在各种交通条件下表现出更大的适应性和适用性。此外,深入探讨了自动驾驶汽车渗透率和交通流量对不同控制策略性能的影响。仿真结果表明,在低、中等交通条件下,如果CAV积分足够,微观控制可以与宏观控制相媲美,而在大交通流量下,宏观控制无法被微观控制所取代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信