{"title":"Region detection and image clustering via sparse Kronecker product decomposition","authors":"Guang Yang , Long Feng","doi":"10.1016/j.csda.2025.108226","DOIUrl":null,"url":null,"abstract":"<div><div>Image clustering is usually conducted by vectorizing image pixels, treating them as independent, and applying classical clustering approaches to the obtained features. However, as image data is often of high-dimensional and contains rich spatial information, such treatment is far from satisfactory. For medical image data, another important characteristic is the region-wise sparseness in signals. That is to say, there are only a few unknown regions in the medical image that differentiate the images associated with different groups of patients, while other regions are uninformative. Accurately detecting these informative regions would not only improve clustering accuracy, more importantly, it would also provide interpretations for the rationale behind them. Motivated by the need to identify significant regions of interest, we propose a general framework named Image Clustering via Sparse Kronecker Product Decomposition (IC-SKPD). This framework aims to simultaneously divide samples into clusters and detect regions that are informative for clustering. Our framework is general in the sense that it provides a unified treatment for matrix and tensor-valued samples. An iterative hard-thresholded singular value decomposition approach is developed to solve this model. Theoretically, the IC-SKPD enjoys guarantees for clustering accuracy and region detection consistency under mild conditions on the minimum signals. Comprehensive simulations along with real data analysis further validate the superior performance of IC-SKPD on clustering and region detection.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"211 ","pages":"Article 108226"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325001021","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Image clustering is usually conducted by vectorizing image pixels, treating them as independent, and applying classical clustering approaches to the obtained features. However, as image data is often of high-dimensional and contains rich spatial information, such treatment is far from satisfactory. For medical image data, another important characteristic is the region-wise sparseness in signals. That is to say, there are only a few unknown regions in the medical image that differentiate the images associated with different groups of patients, while other regions are uninformative. Accurately detecting these informative regions would not only improve clustering accuracy, more importantly, it would also provide interpretations for the rationale behind them. Motivated by the need to identify significant regions of interest, we propose a general framework named Image Clustering via Sparse Kronecker Product Decomposition (IC-SKPD). This framework aims to simultaneously divide samples into clusters and detect regions that are informative for clustering. Our framework is general in the sense that it provides a unified treatment for matrix and tensor-valued samples. An iterative hard-thresholded singular value decomposition approach is developed to solve this model. Theoretically, the IC-SKPD enjoys guarantees for clustering accuracy and region detection consistency under mild conditions on the minimum signals. Comprehensive simulations along with real data analysis further validate the superior performance of IC-SKPD on clustering and region detection.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]