Stabilizing and solving unique continuation problems by parameterizing data and learning finite element solution operators

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Erik Burman , Mats G. Larson , Karl Larsson , Carl Lundholm
{"title":"Stabilizing and solving unique continuation problems by parameterizing data and learning finite element solution operators","authors":"Erik Burman ,&nbsp;Mats G. Larson ,&nbsp;Karl Larsson ,&nbsp;Carl Lundholm","doi":"10.1016/j.cma.2025.118111","DOIUrl":null,"url":null,"abstract":"<div><div>We consider an inverse problem involving the reconstruction of the solution to a nonlinear partial differential equation (PDE) with unknown boundary conditions. Instead of direct boundary data, we are provided with a large dataset of boundary observations for typical solutions (collective data) and a bulk measurement of a specific realization. To leverage this collective data, we first compress the boundary data using proper orthogonal decomposition (POD) in a linear expansion. Next, we identify a possible nonlinear low-dimensional structure in the expansion coefficients using an autoencoder, which provides a parametrization of the dataset in a lower-dimensional latent space. We then train an operator network to map the expansion coefficients representing the boundary data to the finite element (FE) solution of the PDE. Finally, we connect the autoencoder’s decoder to the operator network which enables us to solve the inverse problem by optimizing a data-fitting term over the latent space. We analyze the underlying stabilized finite element method (FEM) in the linear setting and establish an optimal error estimate in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm. The nonlinear problem is then studied numerically, demonstrating the effectiveness of our approach.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"444 ","pages":"Article 118111"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525003834","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an inverse problem involving the reconstruction of the solution to a nonlinear partial differential equation (PDE) with unknown boundary conditions. Instead of direct boundary data, we are provided with a large dataset of boundary observations for typical solutions (collective data) and a bulk measurement of a specific realization. To leverage this collective data, we first compress the boundary data using proper orthogonal decomposition (POD) in a linear expansion. Next, we identify a possible nonlinear low-dimensional structure in the expansion coefficients using an autoencoder, which provides a parametrization of the dataset in a lower-dimensional latent space. We then train an operator network to map the expansion coefficients representing the boundary data to the finite element (FE) solution of the PDE. Finally, we connect the autoencoder’s decoder to the operator network which enables us to solve the inverse problem by optimizing a data-fitting term over the latent space. We analyze the underlying stabilized finite element method (FEM) in the linear setting and establish an optimal error estimate in the H1-norm. The nonlinear problem is then studied numerically, demonstrating the effectiveness of our approach.
通过参数化数据和学习有限元解算子来稳定和求解唯一连续问题
我们考虑了一个涉及具有未知边界条件的非线性偏微分方程(PDE)解重建的反问题。我们没有直接的边界数据,而是提供了典型解决方案的大型边界观测数据集(集体数据)和特定实现的批量测量。为了利用这些集体数据,我们首先在线性展开中使用适当的正交分解(POD)压缩边界数据。接下来,我们使用自编码器在展开系数中识别可能的非线性低维结构,该编码器在低维潜在空间中提供数据集的参数化。然后,我们训练一个算子网络,将表示边界数据的扩展系数映射到PDE的有限元解。最后,我们将自编码器的解码器连接到算子网络,这使我们能够通过在潜在空间上优化数据拟合项来解决反问题。分析了底层稳定有限元法(FEM)在线性环境下的应用,建立了h1范数下的最优误差估计。然后对非线性问题进行了数值研究,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信