Erik Burman , Mats G. Larson , Karl Larsson , Carl Lundholm
{"title":"Stabilizing and solving unique continuation problems by parameterizing data and learning finite element solution operators","authors":"Erik Burman , Mats G. Larson , Karl Larsson , Carl Lundholm","doi":"10.1016/j.cma.2025.118111","DOIUrl":null,"url":null,"abstract":"<div><div>We consider an inverse problem involving the reconstruction of the solution to a nonlinear partial differential equation (PDE) with unknown boundary conditions. Instead of direct boundary data, we are provided with a large dataset of boundary observations for typical solutions (collective data) and a bulk measurement of a specific realization. To leverage this collective data, we first compress the boundary data using proper orthogonal decomposition (POD) in a linear expansion. Next, we identify a possible nonlinear low-dimensional structure in the expansion coefficients using an autoencoder, which provides a parametrization of the dataset in a lower-dimensional latent space. We then train an operator network to map the expansion coefficients representing the boundary data to the finite element (FE) solution of the PDE. Finally, we connect the autoencoder’s decoder to the operator network which enables us to solve the inverse problem by optimizing a data-fitting term over the latent space. We analyze the underlying stabilized finite element method (FEM) in the linear setting and establish an optimal error estimate in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm. The nonlinear problem is then studied numerically, demonstrating the effectiveness of our approach.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"444 ","pages":"Article 118111"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525003834","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider an inverse problem involving the reconstruction of the solution to a nonlinear partial differential equation (PDE) with unknown boundary conditions. Instead of direct boundary data, we are provided with a large dataset of boundary observations for typical solutions (collective data) and a bulk measurement of a specific realization. To leverage this collective data, we first compress the boundary data using proper orthogonal decomposition (POD) in a linear expansion. Next, we identify a possible nonlinear low-dimensional structure in the expansion coefficients using an autoencoder, which provides a parametrization of the dataset in a lower-dimensional latent space. We then train an operator network to map the expansion coefficients representing the boundary data to the finite element (FE) solution of the PDE. Finally, we connect the autoencoder’s decoder to the operator network which enables us to solve the inverse problem by optimizing a data-fitting term over the latent space. We analyze the underlying stabilized finite element method (FEM) in the linear setting and establish an optimal error estimate in the -norm. The nonlinear problem is then studied numerically, demonstrating the effectiveness of our approach.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.