Improving the small-signal stability of a stochastic power system — Algorithms and mathematical analysis

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Zhen Wang , Kaihua Xi , Aijie Cheng , Hai Xiang Lin , Jan H. van Schuppen
{"title":"Improving the small-signal stability of a stochastic power system — Algorithms and mathematical analysis","authors":"Zhen Wang ,&nbsp;Kaihua Xi ,&nbsp;Aijie Cheng ,&nbsp;Hai Xiang Lin ,&nbsp;Jan H. van Schuppen","doi":"10.1016/j.chaos.2025.116616","DOIUrl":null,"url":null,"abstract":"<div><div>Tools and analysis for improving the small-signal stability of a stochastic power system by optimal power dispatch in each short time horizon, such as five-minute intervals, are provided in this paper. An objective function which characterizes the maximal exit probability from the static stability region <span><math><mrow><mo>(</mo><mo>−</mo><mi>π</mi><mo>/</mo><mn>2</mn><mo>,</mo><mi>π</mi><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span> across the phase-angle differences of all power lines is formulated. This objective function is proven to be Lipschitz continuous, nondifferentiable, and nonconvex, with a finite minimum defined over the region of power supply vectors. The formulas of the generalized subgradient and directional derivative of the objective function are provided, and based on these formulas, a two-step algorithm is designed to approximate a minimizer accompanied by the convergence proof: (1) using a projected generalized subgradient method to compute an effective initial vector, and (2) applying the steepest descent method to approximate a local minimizer. The algorithms have been verified using a synthesized power network, demonstrating computational validity and effectiveness in minimizing the maximal exit probability of all power lines.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116616"},"PeriodicalIF":5.6000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925006290","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Tools and analysis for improving the small-signal stability of a stochastic power system by optimal power dispatch in each short time horizon, such as five-minute intervals, are provided in this paper. An objective function which characterizes the maximal exit probability from the static stability region (π/2,π/2) across the phase-angle differences of all power lines is formulated. This objective function is proven to be Lipschitz continuous, nondifferentiable, and nonconvex, with a finite minimum defined over the region of power supply vectors. The formulas of the generalized subgradient and directional derivative of the objective function are provided, and based on these formulas, a two-step algorithm is designed to approximate a minimizer accompanied by the convergence proof: (1) using a projected generalized subgradient method to compute an effective initial vector, and (2) applying the steepest descent method to approximate a local minimizer. The algorithms have been verified using a synthesized power network, demonstrating computational validity and effectiveness in minimizing the maximal exit probability of all power lines.
提高随机电力系统小信号稳定性的算法与数学分析
本文提供了提高随机电力系统小信号稳定性的工具和分析方法,这些方法是在短时间范围内(如5分钟间隔)进行最优电力调度。给出了在所有电力线相位角差范围内,从静态稳定区(−π/2,π/2)最大退出概率的目标函数。证明了该目标函数是Lipschitz连续的、不可微的、非凸的,在电源向量区域上有一个有限的最小值。给出了目标函数的广义子梯度和方向导数的表达式,并在此基础上设计了一个两步逼近最小值的算法,并给出了收敛性证明:(1)用投影广义子梯度法计算有效初始向量,(2)用最陡下降法逼近局部最小值。通过一个综合电网对算法进行了验证,证明了算法在最小化所有电力线最大退出概率方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信