Jump amplitude inference in SDEs with cosine kernel

IF 1.4 Q2 MATHEMATICS, APPLIED
Wuchen Li , Luwen Zhang , Jian Xu , Linghui Li , Liping Bai
{"title":"Jump amplitude inference in SDEs with cosine kernel","authors":"Wuchen Li ,&nbsp;Luwen Zhang ,&nbsp;Jian Xu ,&nbsp;Linghui Li ,&nbsp;Liping Bai","doi":"10.1016/j.rinam.2025.100596","DOIUrl":null,"url":null,"abstract":"<div><div>For estimating the jump amplitude in stochastic differential equations with jumps, existing parameter estimation methods in the academic community suffer from inherent systematic errors. Commonly used kernel functions often assume symmetric distributions, limiting their ability to model skewed distributions. Many methods can simulate positively skewed distributions but fail to handle negatively skewed ones, and they tend to overestimate the probability density when the jump size is close to zero. This paper introduces a novel kernel density estimation method based on cosine functions for jump amplitude estimation. Our approach addresses these systematic errors, especially under large sample conditions, enabling more accurate statistical inference for the jump amplitude in stochastic differential equations with jumps. We anticipate that this method will contribute positively to research in areas such as finance and signal processing.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100596"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For estimating the jump amplitude in stochastic differential equations with jumps, existing parameter estimation methods in the academic community suffer from inherent systematic errors. Commonly used kernel functions often assume symmetric distributions, limiting their ability to model skewed distributions. Many methods can simulate positively skewed distributions but fail to handle negatively skewed ones, and they tend to overestimate the probability density when the jump size is close to zero. This paper introduces a novel kernel density estimation method based on cosine functions for jump amplitude estimation. Our approach addresses these systematic errors, especially under large sample conditions, enabling more accurate statistical inference for the jump amplitude in stochastic differential equations with jumps. We anticipate that this method will contribute positively to research in areas such as finance and signal processing.
带余弦核的SDEs跳幅推断
对于具有跳变的随机微分方程的跳变幅度估计,学术界现有的参数估计方法存在固有的系统误差。常用的核函数通常假设对称分布,限制了它们对倾斜分布建模的能力。许多方法可以模拟正偏态分布,但不能处理负偏态分布,而且当跳跃大小接近于零时,它们往往会高估概率密度。提出了一种基于余弦函数的核密度估计方法,用于跳幅估计。我们的方法解决了这些系统误差,特别是在大样本条件下,能够对具有跳跃的随机微分方程的跳跃幅度进行更准确的统计推断。我们预计这种方法将对金融和信号处理等领域的研究做出积极贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信