Dual similarity transformations and integrable reductions of matrix mKdV models

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Wen-Xiu Ma
{"title":"Dual similarity transformations and integrable reductions of matrix mKdV models","authors":"Wen-Xiu Ma","doi":"10.1016/j.physleta.2025.130727","DOIUrl":null,"url":null,"abstract":"<div><div>This work aims to construct dual similarity transformations and explore integrable reductions of matrix modified Korteweg–de Vries (mKdV) models. Starting from the zero-curvature formulation, the study employs similarity transformations as the principal tool. Four representative scenarios of reduced Ablowitz–Kaup–Newell–Segur matrix spectral problems are analyzed, providing concrete examples of reduced matrix mKdV integrable models derived through dual similarity transformations.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"554 ","pages":"Article 130727"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960125005079","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work aims to construct dual similarity transformations and explore integrable reductions of matrix modified Korteweg–de Vries (mKdV) models. Starting from the zero-curvature formulation, the study employs similarity transformations as the principal tool. Four representative scenarios of reduced Ablowitz–Kaup–Newell–Segur matrix spectral problems are analyzed, providing concrete examples of reduced matrix mKdV integrable models derived through dual similarity transformations.
矩阵mKdV模型的对偶相似变换和可积约简
本文旨在构造对偶相似变换并探索矩阵修正Korteweg-de Vries (mKdV)模型的可积约简。本研究从零曲率公式出发,采用相似变换作为主要工具。分析了约简ablowitz - kap - newwell - segur矩阵谱问题的四种典型情形,给出了通过对偶相似变换导出的约简矩阵mKdV可积模型的具体实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信