A Hamilton-Souplet-Zhang type gradient estimate for a class of parabolic equations on Finsler manifolds

IF 0.6 4区 数学 Q3 MATHEMATICS
Zisu Zhao
{"title":"A Hamilton-Souplet-Zhang type gradient estimate for a class of parabolic equations on Finsler manifolds","authors":"Zisu Zhao","doi":"10.1016/j.difgeo.2025.102264","DOIUrl":null,"url":null,"abstract":"<div><div>Employing a new Laplacian comparison theorem, we have derived a Souplet-Zhang type gradient estimate for a specific nonlinear parabolic equation (Finslerian logarithmic Schrödinger equation) on a non-compact forward complete Finsler manifold with some curvatures bounded from below. All the coefficients in our equations vary with time on the manifold. As applications, we obtain a local Harnack inequality and a Liouville-type theorem.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"100 ","pages":"Article 102264"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000397","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Employing a new Laplacian comparison theorem, we have derived a Souplet-Zhang type gradient estimate for a specific nonlinear parabolic equation (Finslerian logarithmic Schrödinger equation) on a non-compact forward complete Finsler manifold with some curvatures bounded from below. All the coefficients in our equations vary with time on the manifold. As applications, we obtain a local Harnack inequality and a Liouville-type theorem.
一类抛物型方程在Finsler流形上的Hamilton-Souplet-Zhang型梯度估计
利用一个新的拉普拉斯比较定理,我们得到了非紧正向完全Finsler流形上一类特殊非线性抛物方程(Finslerian对数Schrödinger方程)的Souplet-Zhang型梯度估计。方程中的所有系数在流形上随时间变化。作为应用,我们得到了一个局部的Harnack不等式和一个liouville型定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信