{"title":"Residual flow in a deglaciated coastal bay with low freshwater input","authors":"Taylor Bailey, Lauren Ross, Cristian Rojas","doi":"10.1016/j.csr.2025.105505","DOIUrl":null,"url":null,"abstract":"<div><div>The drivers of the tidal and residual flows in estuaries can vary spatially and temporally due to geomorphic complexities, fortnightly tides, and climatic influences. In this paper, we explore the mechanisms that give rise to the circulation patterns in Frenchman Bay, Maine, on the Eastern Coast of the USA, under varying freshwater input conditions and fortnightly tidal phases, using idealized simulations from a high-resolution, three-dimensional numerical model. The results of the simulations at the tidal timescale reveal a tidal asymmetry in vorticity, where vorticity generated during flood tide is not spun-down during the subsequent ebb. This asymmetry prompts the investigation of the residual circulation in the bay which is characterized by large tidal residual eddies. These eddies are found to persist in the depth-averaged residual flow regardless of the freshwater input or tidal phase, leading to the conclusion that the eddies are “geomorphically-constrained” in the bay. Analysis of the horizontal momentum terms and a simulation performed without Coriolis forcing demonstrates that the tidal stress terms predominantly balance the barotropic pressure gradient to give rise to the eddy patterns, while the Coriolis force acts to strengthen their vorticity. The eddies create a laterally sheared residual flow structure with depth, however the flow is more vertically sheared during the neap tide when the baroclinic pressure gradient plays a larger role. These findings demonstrate the persistence of tidal residual eddies regardless of freshwater input or fortnightly tidal phase in a geomorphically complex deglaciated coastal bay with low freshwater input.</div></div>","PeriodicalId":50618,"journal":{"name":"Continental Shelf Research","volume":"292 ","pages":"Article 105505"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continental Shelf Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278434325001050","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The drivers of the tidal and residual flows in estuaries can vary spatially and temporally due to geomorphic complexities, fortnightly tides, and climatic influences. In this paper, we explore the mechanisms that give rise to the circulation patterns in Frenchman Bay, Maine, on the Eastern Coast of the USA, under varying freshwater input conditions and fortnightly tidal phases, using idealized simulations from a high-resolution, three-dimensional numerical model. The results of the simulations at the tidal timescale reveal a tidal asymmetry in vorticity, where vorticity generated during flood tide is not spun-down during the subsequent ebb. This asymmetry prompts the investigation of the residual circulation in the bay which is characterized by large tidal residual eddies. These eddies are found to persist in the depth-averaged residual flow regardless of the freshwater input or tidal phase, leading to the conclusion that the eddies are “geomorphically-constrained” in the bay. Analysis of the horizontal momentum terms and a simulation performed without Coriolis forcing demonstrates that the tidal stress terms predominantly balance the barotropic pressure gradient to give rise to the eddy patterns, while the Coriolis force acts to strengthen their vorticity. The eddies create a laterally sheared residual flow structure with depth, however the flow is more vertically sheared during the neap tide when the baroclinic pressure gradient plays a larger role. These findings demonstrate the persistence of tidal residual eddies regardless of freshwater input or fortnightly tidal phase in a geomorphically complex deglaciated coastal bay with low freshwater input.
期刊介绍:
Continental Shelf Research publishes articles dealing with the biological, chemical, geological and physical oceanography of the shallow marine environment, from coastal and estuarine waters out to the shelf break. The continental shelf is a critical environment within the land-ocean continuum, and many processes, functions and problems in the continental shelf are driven by terrestrial inputs transported through the rivers and estuaries to the coastal and continental shelf areas. Manuscripts that deal with these topics must make a clear link to the continental shelf. Examples of research areas include:
Physical sedimentology and geomorphology
Geochemistry of the coastal ocean (inorganic and organic)
Marine environment and anthropogenic effects
Interaction of physical dynamics with natural and manmade shoreline features
Benthic, phytoplankton and zooplankton ecology
Coastal water and sediment quality, and ecosystem health
Benthic-pelagic coupling (physical and biogeochemical)
Interactions between physical dynamics (waves, currents, mixing, etc.) and biogeochemical cycles
Estuarine, coastal and shelf sea modelling and process studies.