Kelly E. Carstens , Arif Dönmez , Jui-Hua Hsieh , Kristina Bartmann , Katie Paul Friedman , Katharina Koch , Martin Scholze , Ellen Fritsche
{"title":"A comparative study of biostatistical pipelines for benchmark concentration modeling of in vitro screening assays","authors":"Kelly E. Carstens , Arif Dönmez , Jui-Hua Hsieh , Kristina Bartmann , Katie Paul Friedman , Katharina Koch , Martin Scholze , Ellen Fritsche","doi":"10.1016/j.comtox.2025.100360","DOIUrl":null,"url":null,"abstract":"<div><div>New approach methods (NAMs) have been prioritized to reduce the use of animals for chemical safety assessment while continuing to protect human health and the environment. A key challenge of generating toxicity data is the implementation of a standardized analysis approach for transparent and reproducible benchmark concentration (BMC) estimation and uncertainty quantification for assay developers, regulators, and other stakeholders. In this study, we compared the bioactivity results of 321 chemical samples from four established BMC analysis pipelines used for evaluation of developmental neurotoxicity (DNT) NAMs data: the ToxCast pipeline (tcpl), CRStats, DNT DIVER (Curvep and Hill pipelines). We found an overall activity hit call concordance of 77.2 % and highly correlated BMC estimations (r = 0.92 ± 0.02 SD), demonstrating generally good agreement across pipelines. Discordance appeared to be explained predominantly by noise within the data and borderline activity (activity occuring near the benchmark response level). Evaluation of the BMC confidence intervals indicated that pipeline selection may impact the estimation of the BMC lower bound. Consideration of biphasic models appeared important for capturing biologically-relevant changes in activity in the DNT battery. Lastly, different approaches to compute ‘selective’ bioactivity (activity below the threshold of cytotoxicity) were compared, identifying the CRstats classification model as more stringent for classifying selective activity. Overall, these findings indicated greater confidence in NAMs bioactivity results and emphasize the importance of understanding strengths and uncertainties of concentration–response modeling pipelines for informing biological interpretation and application decision making.</div></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"34 ","pages":"Article 100360"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468111325000209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
New approach methods (NAMs) have been prioritized to reduce the use of animals for chemical safety assessment while continuing to protect human health and the environment. A key challenge of generating toxicity data is the implementation of a standardized analysis approach for transparent and reproducible benchmark concentration (BMC) estimation and uncertainty quantification for assay developers, regulators, and other stakeholders. In this study, we compared the bioactivity results of 321 chemical samples from four established BMC analysis pipelines used for evaluation of developmental neurotoxicity (DNT) NAMs data: the ToxCast pipeline (tcpl), CRStats, DNT DIVER (Curvep and Hill pipelines). We found an overall activity hit call concordance of 77.2 % and highly correlated BMC estimations (r = 0.92 ± 0.02 SD), demonstrating generally good agreement across pipelines. Discordance appeared to be explained predominantly by noise within the data and borderline activity (activity occuring near the benchmark response level). Evaluation of the BMC confidence intervals indicated that pipeline selection may impact the estimation of the BMC lower bound. Consideration of biphasic models appeared important for capturing biologically-relevant changes in activity in the DNT battery. Lastly, different approaches to compute ‘selective’ bioactivity (activity below the threshold of cytotoxicity) were compared, identifying the CRstats classification model as more stringent for classifying selective activity. Overall, these findings indicated greater confidence in NAMs bioactivity results and emphasize the importance of understanding strengths and uncertainties of concentration–response modeling pipelines for informing biological interpretation and application decision making.
期刊介绍:
Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs