On the formula for characteristic determinants of boundary value problems for n × n Dirac type systems and its applications

IF 1.5 1区 数学 Q1 MATHEMATICS
Anton A. Lunyov , Mark M. Malamud
{"title":"On the formula for characteristic determinants of boundary value problems for n × n Dirac type systems and its applications","authors":"Anton A. Lunyov ,&nbsp;Mark M. Malamud","doi":"10.1016/j.aim.2025.110389","DOIUrl":null,"url":null,"abstract":"<div><div>The paper is concerned with the spectral properties of the boundary value problems (BVP) associated with the following <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> Dirac type equation:<span><span><span><math><mo>−</mo><mi>i</mi><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>−</mo><mi>i</mi><mi>Q</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>y</mi><mo>=</mo><mi>λ</mi><mi>B</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>y</mi><mo>,</mo><mspace></mspace><mi>y</mi><mo>=</mo><mrow><mi>col</mi></mrow><mo>(</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>ℓ</mi><mo>]</mo><mo>,</mo></math></span></span></span> on a finite interval <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mi>ℓ</mi><mo>]</mo></math></span> subject to the general two-point boundary conditions <span><math><mi>C</mi><mi>y</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>+</mo><mi>D</mi><mi>y</mi><mo>(</mo><mi>ℓ</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> with <span><math><mi>C</mi><mo>,</mo><mi>D</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup></math></span>. Here <span><math><mi>Q</mi><mo>=</mo><msubsup><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>j</mi><mi>k</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>j</mi><mo>,</mo><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is an integrable potential matrix and <span><math><mi>B</mi><mo>=</mo><mrow><mi>diag</mi></mrow><mo>(</mo><msub><mrow><mi>β</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><msup><mrow><mi>B</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is a diagonal integrable matrix “weight”. If <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mi>m</mi></math></span> and <span><math><mi>B</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>=</mo><mrow><mi>diag</mi></mrow><mo>(</mo><mo>−</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span>, this equation turns into <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> Dirac equation.</div><div>First, assuming that <span><math><mrow><mi>supp</mi></mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>j</mi><mi>k</mi></mrow></msub><mo>)</mo><mo>⊂</mo><mrow><mi>supp</mi></mrow><mo>(</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></math></span>, we show that the deviation <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>λ</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>Φ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> of the fundamental matrix solutions to the above perturbed and unperturbed (<span><math><mi>Q</mi><mo>=</mo><mn>0</mn></math></span>) equation is represented as a Fourier transform of a certain matrix kernel <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mo>⋅</mo><mo>,</mo><mo>⋅</mo><mo>)</mo></math></span> from a special Banach space.</div><div>This result is used to prove our main result, the following formula for the deviation of the characteristic determinants <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> and <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> of two (perturbed and unperturbed) BVPs as a Fourier transform,<span><span><span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>+</mo><munderover><mo>∫</mo><mrow><msub><mrow><mi>b</mi></mrow><mrow><mo>−</mo></mrow></msub></mrow><mrow><msub><mrow><mi>b</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></munderover><mi>g</mi><mo>(</mo><mi>u</mi><mo>)</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>λ</mi><mi>u</mi></mrow></msup><mspace></mspace><mi>d</mi><mi>u</mi><mo>,</mo><mspace></mspace><mi>g</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>[</mo><msub><mrow><mi>b</mi></mrow><mrow><mo>−</mo></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>]</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>b</mi></mrow><mrow><mo>±</mo></mrow></msub></math></span> are explicitly expressed via entries of the matrix function <span><math><mi>B</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span>.</div><div>In turn, assuming that each function <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> is of fixed sign (so-called “fixed sign” condition), this representation yields asymptotic behavior of the spectrum in the case of regular boundary conditions. Namely, we show that <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msubsup><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> as <span><math><mi>m</mi><mo>→</mo><mo>∞</mo></math></span>, where <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>m</mi><mo>∈</mo><mi>Z</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>{</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msubsup><mo>}</mo></mrow><mrow><mi>m</mi><mo>∈</mo><mi>Z</mi></mrow></msub></math></span> are sequences of eigenvalues of perturbed and unperturbed BVP, respectively. It is also shown that for <span><math><mi>Q</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>, <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span>, the following estimate holds under additional condition on <span><math><mi>B</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span>:<span><span><span><math><munder><mo>∑</mo><mrow><mi>m</mi><mo>∈</mo><mi>Z</mi></mrow></munder><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>−</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msubsup><msup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msup><mo>+</mo><munder><mo>∑</mo><mrow><mi>m</mi><mo>∈</mo><mi>Z</mi></mrow></munder><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mo>|</mo><mi>m</mi><mo>|</mo><mo>)</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>−</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msubsup><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>&lt;</mo><mo>∞</mo><mo>,</mo><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mo>=</mo><mi>p</mi><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>.</mo></math></span></span></span></div><div>In the case of Dirac operator, we show that the sequence of the eigenvalues splits into the union of <em>n</em> branches asymptotically close to arithmetic progressions <span><math><msub><mrow><mo>{</mo><mn>2</mn><mi>π</mi><mi>k</mi><mo>−</mo><mi>i</mi><mrow><mi>Log</mi></mrow><mo>(</mo><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo><mo>}</mo></mrow><mrow><mi>k</mi><mo>∈</mo><mi>Z</mi></mrow></msub></math></span>, <span><math><mi>s</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>, where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are the eigenvalues of a certain <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrix explicitly constructed via the matrices <em>C</em> and <em>D</em>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"478 ","pages":"Article 110389"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002877","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is concerned with the spectral properties of the boundary value problems (BVP) associated with the following n×n Dirac type equation:iyiQ(x)y=λB(x)y,y=col(y1,,yn),x[0,], on a finite interval [0,] subject to the general two-point boundary conditions Cy(0)+Dy()=0 with C,DCn×n. Here Q=(Qjk)j,k=1n is an integrable potential matrix and B=diag(β1,,βn)=B is a diagonal integrable matrix “weight”. If n=2m and B()=diag(Im,Im), this equation turns into n×n Dirac equation.
First, assuming that supp(Qjk)supp(βkβj), we show that the deviation ΦQ(,λ)Φ0(,λ) of the fundamental matrix solutions to the above perturbed and unperturbed (Q=0) equation is represented as a Fourier transform of a certain matrix kernel KQ(,) from a special Banach space.
This result is used to prove our main result, the following formula for the deviation of the characteristic determinants ΔQ() and Δ0() of two (perturbed and unperturbed) BVPs as a Fourier transform,ΔQ(λ)=Δ0(λ)+bb+g(u)eiλudu,gL1[b,b+], where b± are explicitly expressed via entries of the matrix function B().
In turn, assuming that each function βk() is of fixed sign (so-called “fixed sign” condition), this representation yields asymptotic behavior of the spectrum in the case of regular boundary conditions. Namely, we show that λm=λm0+o(1) as m, where {λm}mZ and {λm0}mZ are sequences of eigenvalues of perturbed and unperturbed BVP, respectively. It is also shown that for QLp, p(1,2], the following estimate holds under additional condition on B():mZ|λmλm0|p+mZ(1+|m|)p2|λmλm0|p<,p:=p/(p1).
In the case of Dirac operator, we show that the sequence of the eigenvalues splits into the union of n branches asymptotically close to arithmetic progressions {2πkiLog(μs)}kZ, s{1,,n}, where μ1,,μn are the eigenvalues of a certain n×n matrix explicitly constructed via the matrices C and D.
n × n Dirac型系统边值问题的特征行列式及其应用
本文研究了下述n×n Dirac型方程的边值问题的谱性质:−iy′−iQ(x)y=λB(x)y,y=col(y1,…,yn),x∈[0,r],在有限区间[0,r]上满足一般两点边界条件Cy(0)+Dy(r)=0, C,D∈Cn×n。其中Q=(Qjk)j,k=1n是一个可积势矩阵,B=diag(β1,…,βn)=B *是一个对角可积矩阵“权”。若n=2m,且B(⋅)=diag(- Im,Im),则此方程变为n×n狄拉克方程。首先,假设supp(Qjk)∧supp(βk−βj),我们证明上述扰动和未扰动(Q=0)方程的基本矩阵解的偏差ΦQ(⋅,λ)−Φ0(⋅,λ)表示为某个矩阵核KQ(⋅,⋅)在一个特殊的Banach空间中的傅里叶变换。该结果用于证明我们的主要结果,即两个(摄动和未摄动)BVPs的特征行列式ΔQ(⋅)和Δ0(⋅)的偏差作为傅里叶变换的表达式,ΔQ(λ)=Δ0(λ)+∫b−b+g(u)eiλudu,g∈L1[b−,b+],其中b±通过矩阵函数b(⋅)的项显式表示。反过来,假设每个函数βk(⋅)是固定符号(所谓的“固定符号”条件),这种表示得到了正则边界条件下谱的渐近行为。即,当m→∞时,λm=λm0+o(1),其中{λm}m∈Z和{λm0}m∈Z分别是摄动BVP和非摄动BVP的特征值序列。还证明了对于Q∈Lp, p∈(1,2),在B(⋅)的附加条件下,以下估计成立:∑m∈Z|λm−λm0|p ' +∑m∈Z(1+|m|)p−2|λm−λm0|p<∞,p ':=p/(p−1)。在Dirac算子的情况下,我们证明了特征值序列分解为n个分支的并,渐近地接近等差数列{2πk−iLog(−μs)}k∈Z, s∈{1,…,n},其中μ1,…,μn是由矩阵C和D显式构造的某个n×n矩阵的特征值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信