{"title":"On the formula for characteristic determinants of boundary value problems for n × n Dirac type systems and its applications","authors":"Anton A. Lunyov , Mark M. Malamud","doi":"10.1016/j.aim.2025.110389","DOIUrl":null,"url":null,"abstract":"<div><div>The paper is concerned with the spectral properties of the boundary value problems (BVP) associated with the following <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> Dirac type equation:<span><span><span><math><mo>−</mo><mi>i</mi><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>−</mo><mi>i</mi><mi>Q</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>y</mi><mo>=</mo><mi>λ</mi><mi>B</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>y</mi><mo>,</mo><mspace></mspace><mi>y</mi><mo>=</mo><mrow><mi>col</mi></mrow><mo>(</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>ℓ</mi><mo>]</mo><mo>,</mo></math></span></span></span> on a finite interval <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mi>ℓ</mi><mo>]</mo></math></span> subject to the general two-point boundary conditions <span><math><mi>C</mi><mi>y</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>+</mo><mi>D</mi><mi>y</mi><mo>(</mo><mi>ℓ</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> with <span><math><mi>C</mi><mo>,</mo><mi>D</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup></math></span>. Here <span><math><mi>Q</mi><mo>=</mo><msubsup><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>j</mi><mi>k</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>j</mi><mo>,</mo><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is an integrable potential matrix and <span><math><mi>B</mi><mo>=</mo><mrow><mi>diag</mi></mrow><mo>(</mo><msub><mrow><mi>β</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><msup><mrow><mi>B</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is a diagonal integrable matrix “weight”. If <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mi>m</mi></math></span> and <span><math><mi>B</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>=</mo><mrow><mi>diag</mi></mrow><mo>(</mo><mo>−</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span>, this equation turns into <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> Dirac equation.</div><div>First, assuming that <span><math><mrow><mi>supp</mi></mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>j</mi><mi>k</mi></mrow></msub><mo>)</mo><mo>⊂</mo><mrow><mi>supp</mi></mrow><mo>(</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></math></span>, we show that the deviation <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>λ</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>Φ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> of the fundamental matrix solutions to the above perturbed and unperturbed (<span><math><mi>Q</mi><mo>=</mo><mn>0</mn></math></span>) equation is represented as a Fourier transform of a certain matrix kernel <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mo>⋅</mo><mo>,</mo><mo>⋅</mo><mo>)</mo></math></span> from a special Banach space.</div><div>This result is used to prove our main result, the following formula for the deviation of the characteristic determinants <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> and <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> of two (perturbed and unperturbed) BVPs as a Fourier transform,<span><span><span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>+</mo><munderover><mo>∫</mo><mrow><msub><mrow><mi>b</mi></mrow><mrow><mo>−</mo></mrow></msub></mrow><mrow><msub><mrow><mi>b</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></munderover><mi>g</mi><mo>(</mo><mi>u</mi><mo>)</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>λ</mi><mi>u</mi></mrow></msup><mspace></mspace><mi>d</mi><mi>u</mi><mo>,</mo><mspace></mspace><mi>g</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>[</mo><msub><mrow><mi>b</mi></mrow><mrow><mo>−</mo></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>]</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>b</mi></mrow><mrow><mo>±</mo></mrow></msub></math></span> are explicitly expressed via entries of the matrix function <span><math><mi>B</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span>.</div><div>In turn, assuming that each function <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> is of fixed sign (so-called “fixed sign” condition), this representation yields asymptotic behavior of the spectrum in the case of regular boundary conditions. Namely, we show that <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msubsup><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> as <span><math><mi>m</mi><mo>→</mo><mo>∞</mo></math></span>, where <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>m</mi><mo>∈</mo><mi>Z</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>{</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msubsup><mo>}</mo></mrow><mrow><mi>m</mi><mo>∈</mo><mi>Z</mi></mrow></msub></math></span> are sequences of eigenvalues of perturbed and unperturbed BVP, respectively. It is also shown that for <span><math><mi>Q</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>, <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span>, the following estimate holds under additional condition on <span><math><mi>B</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span>:<span><span><span><math><munder><mo>∑</mo><mrow><mi>m</mi><mo>∈</mo><mi>Z</mi></mrow></munder><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>−</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msubsup><msup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msup><mo>+</mo><munder><mo>∑</mo><mrow><mi>m</mi><mo>∈</mo><mi>Z</mi></mrow></munder><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mo>|</mo><mi>m</mi><mo>|</mo><mo>)</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>−</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msubsup><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo><</mo><mo>∞</mo><mo>,</mo><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mo>=</mo><mi>p</mi><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>.</mo></math></span></span></span></div><div>In the case of Dirac operator, we show that the sequence of the eigenvalues splits into the union of <em>n</em> branches asymptotically close to arithmetic progressions <span><math><msub><mrow><mo>{</mo><mn>2</mn><mi>π</mi><mi>k</mi><mo>−</mo><mi>i</mi><mrow><mi>Log</mi></mrow><mo>(</mo><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo><mo>}</mo></mrow><mrow><mi>k</mi><mo>∈</mo><mi>Z</mi></mrow></msub></math></span>, <span><math><mi>s</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>, where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are the eigenvalues of a certain <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrix explicitly constructed via the matrices <em>C</em> and <em>D</em>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"478 ","pages":"Article 110389"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002877","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper is concerned with the spectral properties of the boundary value problems (BVP) associated with the following Dirac type equation: on a finite interval subject to the general two-point boundary conditions with . Here is an integrable potential matrix and is a diagonal integrable matrix “weight”. If and , this equation turns into Dirac equation.
First, assuming that , we show that the deviation of the fundamental matrix solutions to the above perturbed and unperturbed () equation is represented as a Fourier transform of a certain matrix kernel from a special Banach space.
This result is used to prove our main result, the following formula for the deviation of the characteristic determinants and of two (perturbed and unperturbed) BVPs as a Fourier transform, where are explicitly expressed via entries of the matrix function .
In turn, assuming that each function is of fixed sign (so-called “fixed sign” condition), this representation yields asymptotic behavior of the spectrum in the case of regular boundary conditions. Namely, we show that as , where and are sequences of eigenvalues of perturbed and unperturbed BVP, respectively. It is also shown that for , , the following estimate holds under additional condition on :
In the case of Dirac operator, we show that the sequence of the eigenvalues splits into the union of n branches asymptotically close to arithmetic progressions , , where are the eigenvalues of a certain matrix explicitly constructed via the matrices C and D.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.