Archimedean period relations for Rankin-Selberg convolutions

IF 1.5 1区 数学 Q1 MATHEMATICS
Yubo Jin , Dongwen Liu , Binyong Sun
{"title":"Archimedean period relations for Rankin-Selberg convolutions","authors":"Yubo Jin ,&nbsp;Dongwen Liu ,&nbsp;Binyong Sun","doi":"10.1016/j.aim.2025.110393","DOIUrl":null,"url":null,"abstract":"<div><div>We formulate and prove the archimedean period relations for Rankin-Selberg convolutions of <span><math><mrow><mi>GL</mi></mrow><mo>(</mo><mi>n</mi><mo>)</mo><mo>×</mo><mrow><mi>GL</mi></mrow><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><mrow><mi>GL</mi></mrow><mo>(</mo><mi>n</mi><mo>)</mo><mo>×</mo><mrow><mi>GL</mi></mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, for all generic cohomological representations. As a consequence, we prove the non-vanishing of the archimedean modular symbols. This extends the earlier results in <span><span>[14]</span></span> for essentially tempered representations of <span><math><mrow><mi>GL</mi></mrow><mo>(</mo><mi>n</mi><mo>)</mo><mo>×</mo><mrow><mi>GL</mi></mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"478 ","pages":"Article 110393"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002919","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We formulate and prove the archimedean period relations for Rankin-Selberg convolutions of GL(n)×GL(n) and GL(n)×GL(n1), for all generic cohomological representations. As a consequence, we prove the non-vanishing of the archimedean modular symbols. This extends the earlier results in [14] for essentially tempered representations of GL(n)×GL(n1).
Rankin-Selberg卷积的阿基米德周期关系
对于所有的一般上同调表示,我们给出并证明了GL(n)×GL(n)和GL(n)×GL(n−1)的Rankin-Selberg卷积的阿基米德周期关系。因此,我们证明了阿基米德模符号的不灭性。这扩展了[14]中较早的结果,用于GL(n)×GL(n−1)的本质缓和表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信