Yue Sun , Ruixuan Zhu , Hongbo Guo , Baolu Shi , Majie Zhao , Zhijun Wei
{"title":"Effects of equivalence ratios on the oblique detonation initiation in ammonia/hydrogen/air mixtures","authors":"Yue Sun , Ruixuan Zhu , Hongbo Guo , Baolu Shi , Majie Zhao , Zhijun Wei","doi":"10.1016/j.combustflame.2025.114279","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents two-dimensional numerical simulations of oblique detonation waves (ODWs), employing Navier-Stokes equations coupled with detailed chemical reaction mechanisms. We explored the effects of equivalence ratio on initiation characteristics, including the transition type from oblique shock waves (OSWs) to ODWs and the induction length in pure ammonia and hydrogen-ammonia blend fuels. Results indicate that, in pure ammonia fuel, a wave structure transition from OSW<sub>1</sub> to OSW<sub>2</sub> and finally to ODW is formed. As the ammonia equivalence ratio increases, the induction length grows linearly and the transition from OSW to ODW becomes more abrupt. Hydrogen addition significantly shortens the induction length in ammonia-based oblique detonation, with low ammonia concentrations resulting in an induction length even shorter than that of pure hydrogen fuel. Chemical explosion mode analysis identifies O, H, OH, NH<sub>2</sub> as key species contributing to detonation process in the induction region, with ammonia playing a more significant role than hydrogen at initial stages. A predictive method for the OSW-ODW transition in hydrogen-ammonia blend fuels is proposed, offering insights into practical applications of ammonia in ODEs.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"278 ","pages":"Article 114279"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218025003177","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents two-dimensional numerical simulations of oblique detonation waves (ODWs), employing Navier-Stokes equations coupled with detailed chemical reaction mechanisms. We explored the effects of equivalence ratio on initiation characteristics, including the transition type from oblique shock waves (OSWs) to ODWs and the induction length in pure ammonia and hydrogen-ammonia blend fuels. Results indicate that, in pure ammonia fuel, a wave structure transition from OSW1 to OSW2 and finally to ODW is formed. As the ammonia equivalence ratio increases, the induction length grows linearly and the transition from OSW to ODW becomes more abrupt. Hydrogen addition significantly shortens the induction length in ammonia-based oblique detonation, with low ammonia concentrations resulting in an induction length even shorter than that of pure hydrogen fuel. Chemical explosion mode analysis identifies O, H, OH, NH2 as key species contributing to detonation process in the induction region, with ammonia playing a more significant role than hydrogen at initial stages. A predictive method for the OSW-ODW transition in hydrogen-ammonia blend fuels is proposed, offering insights into practical applications of ammonia in ODEs.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.