Connor Thropp MS , Jaroslaw Hepel MD , Timothy Leech , Eric E. Klein PhD , Qiongge Li PhD
{"title":"Validation of a Novel Data-Driven Algorithm to Detect Atypical Prescriptions in Radiation Therapy","authors":"Connor Thropp MS , Jaroslaw Hepel MD , Timothy Leech , Eric E. Klein PhD , Qiongge Li PhD","doi":"10.1016/j.adro.2025.101804","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Erroneous radiation therapy (RT) prescriptions (Rx) can lead to injury or death of patients. A novel data-driven model that uses similarity learning to identify atypical Rx was recently published. In that study, prototype analysis was conducted within a single institution with a single treatment site. The present study sets out to validate the robustness of the model by applying the model to multiple disease sites using a different institution’s data.</div></div><div><h3>Methods and Materials</h3><div>A query was conducted of Brown University Health RT treatment records for thoracic and brain cancer patients from 1995 to 2021 to create historical databases used for training. The query included records containing data on the Rx and patient-specific features. Simulated anomalies were created to mimic potential errors and were used in the training and testing of the model. Model performance was evaluated using F1 score.</div></div><div><h3>Results</h3><div>F1 scores for the brain site are 99% for intensity modulated RT, 90% for stereotactic radiation therapy/ radiosurgery/SRT, and 94% for 3-dimensional RT. F1 scores for the thoracic site are 95%, 90%, and 95% for the 3 techniques, respectively. Statistical analysis shows no significant differences between the model’s prediction and ground truth.</div></div><div><h3>Conclusions</h3><div>The model performance shows feasibility for application to various disease sites across different institutions. This model can be used alongside physicians and physicists during peer review chart rounds to aid in the detection of potential RT Rx errors.</div></div>","PeriodicalId":7390,"journal":{"name":"Advances in Radiation Oncology","volume":"10 7","pages":"Article 101804"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452109425000910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Erroneous radiation therapy (RT) prescriptions (Rx) can lead to injury or death of patients. A novel data-driven model that uses similarity learning to identify atypical Rx was recently published. In that study, prototype analysis was conducted within a single institution with a single treatment site. The present study sets out to validate the robustness of the model by applying the model to multiple disease sites using a different institution’s data.
Methods and Materials
A query was conducted of Brown University Health RT treatment records for thoracic and brain cancer patients from 1995 to 2021 to create historical databases used for training. The query included records containing data on the Rx and patient-specific features. Simulated anomalies were created to mimic potential errors and were used in the training and testing of the model. Model performance was evaluated using F1 score.
Results
F1 scores for the brain site are 99% for intensity modulated RT, 90% for stereotactic radiation therapy/ radiosurgery/SRT, and 94% for 3-dimensional RT. F1 scores for the thoracic site are 95%, 90%, and 95% for the 3 techniques, respectively. Statistical analysis shows no significant differences between the model’s prediction and ground truth.
Conclusions
The model performance shows feasibility for application to various disease sites across different institutions. This model can be used alongside physicians and physicists during peer review chart rounds to aid in the detection of potential RT Rx errors.
期刊介绍:
The purpose of Advances is to provide information for clinicians who use radiation therapy by publishing: Clinical trial reports and reanalyses. Basic science original reports. Manuscripts examining health services research, comparative and cost effectiveness research, and systematic reviews. Case reports documenting unusual problems and solutions. High quality multi and single institutional series, as well as other novel retrospective hypothesis generating series. Timely critical reviews on important topics in radiation oncology, such as side effects. Articles reporting the natural history of disease and patterns of failure, particularly as they relate to treatment volume delineation. Articles on safety and quality in radiation therapy. Essays on clinical experience. Articles on practice transformation in radiation oncology, in particular: Aspects of health policy that may impact the future practice of radiation oncology. How information technology, such as data analytics and systems innovations, will change radiation oncology practice. Articles on imaging as they relate to radiation therapy treatment.