{"title":"Evaluating a continuous feedback strategy to enhance machine learning code smell detection","authors":"Daniel Cruz, Amanda Santana, Eduardo Figueiredo","doi":"10.1016/j.scico.2025.103346","DOIUrl":null,"url":null,"abstract":"<div><div>Code smells are symptoms of bad design choices implemented on the source code. Several code smell detection tools and strategies have been proposed over the years, including the use of machine learning algorithms. However, we lack empirical evidence on how expert feedback could improve machine learning based detection of code smells. This paper aims to propose and evaluate a conceptual strategy to improve machine-learning detection of code smells by means of continuous feedback. To evaluate the strategy, we follow an exploratory evaluation design to compare results of the smell detection before and after feedback provided by a service - acting as a software expert. We focus on four code smells - God Class, Long Method, Feature Envy, and Refused Bequest - detected in 20 Java systems. As results, we observed that continuous feedback improves the performance of code smell detection. For the detection of the class-level code smells, God Class and Refused Bequest, we achieved an average improvement in terms of F1 of 0.13 and 0.58, respectively, after 50 iterations of feedback. For the method-level code smells, Long Method and Feature Envy, the improvements of F1 were 0.66 and 0.72, respectively. Our promising results are a stepping stone towards the development of new strategies and tools relying on continuous feedback for machine learning detection of code smells.</div></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"247 ","pages":"Article 103346"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167642325000851","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Code smells are symptoms of bad design choices implemented on the source code. Several code smell detection tools and strategies have been proposed over the years, including the use of machine learning algorithms. However, we lack empirical evidence on how expert feedback could improve machine learning based detection of code smells. This paper aims to propose and evaluate a conceptual strategy to improve machine-learning detection of code smells by means of continuous feedback. To evaluate the strategy, we follow an exploratory evaluation design to compare results of the smell detection before and after feedback provided by a service - acting as a software expert. We focus on four code smells - God Class, Long Method, Feature Envy, and Refused Bequest - detected in 20 Java systems. As results, we observed that continuous feedback improves the performance of code smell detection. For the detection of the class-level code smells, God Class and Refused Bequest, we achieved an average improvement in terms of F1 of 0.13 and 0.58, respectively, after 50 iterations of feedback. For the method-level code smells, Long Method and Feature Envy, the improvements of F1 were 0.66 and 0.72, respectively. Our promising results are a stepping stone towards the development of new strategies and tools relying on continuous feedback for machine learning detection of code smells.
期刊介绍:
Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design.
The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice.
The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including
• Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software;
• Design, implementation and evaluation of programming languages;
• Programming environments, development tools, visualisation and animation;
• Management of the development process;
• Human factors in software, software for social interaction, software for social computing;
• Cyber physical systems, and software for the interaction between the physical and the machine;
• Software aspects of infrastructure services, system administration, and network management.