Pressure-Induced Cyclic Transformation of Ion–Electron in Nanocrystal SrTiO3

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Min Wang, Rusen Yang* and Hua Pang*, 
{"title":"Pressure-Induced Cyclic Transformation of Ion–Electron in Nanocrystal SrTiO3","authors":"Min Wang,&nbsp;Rusen Yang* and Hua Pang*,&nbsp;","doi":"10.1021/acsaem.5c0100410.1021/acsaem.5c01004","DOIUrl":null,"url":null,"abstract":"<p >The electrical transport properties of nano SrTiO<sub>3</sub> were systematically investigated under high pressures up to 24.5 GPa using AC impedance spectroscopy and first-principles calculations. Through these methods, we identified and elucidated the underlying physical mechanisms responsible for the cyclic ion–electron transformation. This phenomenon arises from variations in <i>C</i>-axis compressibility and a phase transition from the cubic to tetragonal structure, which induces abrupt changes in electron density around oxygen atoms. By applying pressure, it becomes possible to control the lattice spacing, thereby modulating the charge density of O ions and enabling a smooth transition between ion and electron conduction pathways. This study deepens our understanding of the cyclic transformation of ion–electron behavior within solid electrolytes.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 11","pages":"7722–7729 7722–7729"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01004","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The electrical transport properties of nano SrTiO3 were systematically investigated under high pressures up to 24.5 GPa using AC impedance spectroscopy and first-principles calculations. Through these methods, we identified and elucidated the underlying physical mechanisms responsible for the cyclic ion–electron transformation. This phenomenon arises from variations in C-axis compressibility and a phase transition from the cubic to tetragonal structure, which induces abrupt changes in electron density around oxygen atoms. By applying pressure, it becomes possible to control the lattice spacing, thereby modulating the charge density of O ions and enabling a smooth transition between ion and electron conduction pathways. This study deepens our understanding of the cyclic transformation of ion–electron behavior within solid electrolytes.

Abstract Image

SrTiO3纳米晶中离子-电子的压力诱导循环转变
利用交流阻抗谱和第一性原理计算方法,系统地研究了纳米SrTiO3在高达24.5 GPa的高压下的电输运特性。通过这些方法,我们确定并阐明了负责循环离子-电子转换的潜在物理机制。这种现象是由于c轴可压缩性的变化和从立方结构到四方结构的相变引起的,这导致氧原子周围电子密度的突然变化。通过施加压力,可以控制晶格间距,从而调节O离子的电荷密度,并实现离子和电子传导途径之间的平滑过渡。这项研究加深了我们对固体电解质中离子-电子行为循环转变的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信